# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import pickle from collections import defaultdict from .....utils.deps import function_requires_deps, is_dep_available from .....utils.errors import ConvertFailedError if is_dep_available("imagesize"): import imagesize if is_dep_available("tqdm"): from tqdm import tqdm def check_src_dataset(root_dir, dataset_type): """check src dataset format validity""" if dataset_type in ("MSTextRecDataset"): pass else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 MSTextRecDataset 格式。" ) err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。" for anno in ["train.txt", "val.txt", "latex_ocr_tokenizer.json"]: src_anno_path = os.path.join(root_dir, anno) if not os.path.exists(src_anno_path): raise ConvertFailedError( message=f"{err_msg_prefix}保证{src_anno_path}文件存在。" ) return None def convert(dataset_type, input_dir): """convert dataset to pkl format""" # check format validity check_src_dataset(input_dir, dataset_type) if dataset_type in ("MSTextRecDataset"): convert_pkl_dataset(input_dir) else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 MSTextRecDataset 格式。" ) def convert_pkl_dataset(root_dir): for anno in ["train.txt", "val.txt"]: src_img_dir = root_dir src_anno_path = os.path.join(root_dir, anno) txt2pickle(src_img_dir, src_anno_path, root_dir) @function_requires_deps("tqdm", "imagesize") def txt2pickle(images, equations, save_dir): phase = os.path.basename(equations).replace(".txt", "") save_p = os.path.join(save_dir, "latexocr_{}.pkl".format(phase)) min_dimensions = (32, 32) max_dimensions = (672, 192) data = defaultdict(lambda: []) pic_num = 0 if images is not None and equations is not None: with open(equations, "r") as f: lines = f.readlines() for l in tqdm(lines, total=len(lines)): l = l.strip() img_name, equation = l.split("\t") img_path = os.path.join(images, img_name) width, height = imagesize.get(img_path) if ( min_dimensions[0] <= width <= max_dimensions[0] and min_dimensions[1] <= height <= max_dimensions[1] ): divide_h = math.ceil(height / 16) * 16 divide_w = math.ceil(width / 16) * 16 data[(divide_w, divide_h)].append((equation, img_name)) pic_num += 1 data = dict(data) with open(save_p, "wb") as file: pickle.dump(data, file)