import paddlex as pdx from paddlex import transforms as T # 下载和解压蔬菜分类数据集 veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(veg_dataset, path='./') # 定义训练和验证时的transforms # API说明https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/transforms/transforms.md train_transforms = T.Compose( [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()]) eval_transforms = T.Compose([ T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/datasets.md train_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/val_list.txt', label_list='vegetables_cls/labels.txt', transforms=eval_transforms) # 加载模型 model = pdx.load_model('output/mobilenet_v2/best_model') # Step 1/3: 分析模型各层参数在不同的剪裁比例下的敏感度 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/classification.md#analyze_sensitivity model.analyze_sensitivity( dataset=eval_dataset, save_dir='output/mobilenet_v2/prune') # Step 2/3: 根据选择的FLOPs减小比例对模型进行剪裁 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/classification.md#prune model.prune(pruned_flops=.2) # Step 3/3: 对剪裁后的模型重新训练 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/classification.md#train # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph/docs/parameters.md model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=32, eval_dataset=eval_dataset, lr_decay_epochs=[4, 6, 8], learning_rate=0.025, pretrain_weights=None, save_dir='output/mobilenet_v2/prune', use_vdl=True)