# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddlex_hpi.models import ClasPredictor from tests.models.base import BaseTestPredictor from paddlex.inference.results import TopkResult MODEL_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/clas_model.zip" INPUT_DATA_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/clas_input.jpg" EXPECTED_RESULT_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/clas_result.json" EXPECTED_RESULT_WITH_ARGS_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/clas_result_with_args.json" class TestClasPredictor(BaseTestPredictor): @property def model_url(self): return MODEL_URL @property def input_data_url(self): return INPUT_DATA_URL @property def expected_result_url(self): return EXPECTED_RESULT_URL @property def expected_result_with_args_url(self): return EXPECTED_RESULT_WITH_ARGS_URL @property def should_test_with_args(self): return True @property def predictor_cls(self): return ClasPredictor def _predict_with_predictor_args( self, model_path, input_data_path, device, expected_result_with_args ): predictor = self.predictor_cls(model_path, device=device, topk=2) output = predictor(str(input_data_path)) self._check_output(output, expected_result_with_args, 1) def _predict_with_predict_args( self, model_path, input_data_path, device, expected_result, expected_result_with_args, ): predictor = self.predictor_cls(model_path, device=device) output = predictor(str(input_data_path), topk=2) self._check_output(output, expected_result_with_args, 1) output = predictor(str(input_data_path)) self._check_output(output, expected_result, 1) def _check_result(self, result, expected_result): assert isinstance(result, TopkResult) assert "input_img" in result result.pop("input_img") assert set(result) == set(expected_result) assert result["class_ids"] == expected_result["class_ids"] assert np.allclose( np.array(result["scores"]), np.array(expected_result["scores"]), rtol=1e-2, atol=1e-3, ) assert result["label_names"] == expected_result["label_names"]