# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from paddlex_hpi.models import SegPredictor from tests.models.base import BaseTestPredictor from paddlex.inference.results import SegResult MODEL_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_model.zip" INPUT_DATA_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_input.png" EXPECTED_RESULT_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_result.json" class TestSegPredictor(BaseTestPredictor): @property def model_url(self): return MODEL_URL @property def input_data_url(self): return INPUT_DATA_URL @property def expected_result_url(self): return EXPECTED_RESULT_URL @property def expected_result_with_args_url(self): return EXPECTED_RESULT_URL @property def predictor_cls(self): return SegPredictor @property def should_test_with_args(self): return True def _predict_with_predictor_args( self, model_path, input_data_path, device, expected_result_with_args ): with pytest.raises(TypeError): predictor = self.predictor_cls(model_path, device=device, target_size=400) def _predict_with_predict_args( self, model_path, input_data_path, device, expected_result, expected_result_with_args, ): predictor = self.predictor_cls(model_path, device=device) with pytest.raises(TypeError): output = predictor(str(input_data_path), target_size=400) output = list(output) def _check_result(self, result, expected_result): assert isinstance(result, SegResult) assert "input_img" in result result.pop("input_img") assert set(result) == set(expected_result) pred = result["pred"] expected_pred = np.array(expected_result["pred"], dtype=np.int32) assert pred.shape == expected_pred.shape assert (pred != expected_pred).sum() / pred.size < 0.01