// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" // The namespace should be // ultra_infer::vision::classification (ultra_infer::vision::${task}) namespace ultra_infer { namespace vision { /** \brief All object classification model APIs are defined inside this * namespace * */ namespace classification { /*! @brief Torchvision ResNet series model */ class ULTRAINFER_DECL ResNet : public UltraInferModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./resnet50.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, * if the model format is ONNX, this parameter will be ignored \param[in] * custom_option RuntimeOption for inference, the default will use cpu, and * choose the backend defined in "valid_cpu_backends" \param[in] model_format * Model format of the loaded model, default is ONNX format */ ResNet(const std::string &model_file, const std::string ¶ms_file = "", const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::ONNX); virtual std::string ModelName() const { return "ResNet"; } /** \brief Predict for the input "im", the result will be saved in "result". * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result Saving the inference result. * \param[in] topk The length of return values, e.g., if topk==2, the result * will include the 2 most possible class label for input image. */ virtual bool Predict(cv::Mat *im, ClassifyResult *result, int topk = 1); /*! @brief Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default size = {224, 224} */ std::vector size; /*! @brief Mean parameters for normalize, size should be the the same as channels, default mean_vals = {0.485f, 0.456f, 0.406f} */ std::vector mean_vals; /*! @brief Std parameters for normalize, size should be the the same as channels, default std_vals = {0.229f, 0.224f, 0.225f} */ std::vector std_vals; private: /*! @brief Initialize for ResNet model, assign values to the global variables * and call InitRuntime() */ bool Initialize(); /// PreProcessing for the input "mat", the result will be saved in "outputs". bool Preprocess(Mat *mat, FDTensor *outputs); /*! @brief PostProcessing for the input "infer_result", the result will be * saved in "result". */ bool Postprocess(FDTensor &infer_result, ClassifyResult *result, int topk = 1); }; } // namespace classification } // namespace vision } // namespace ultra_infer