--- comments: true --- # PaddleX Model List (Cambricon MLU) PaddleX incorporates multiple pipelines, each containing several modules, and each module encompasses various models. You can select the appropriate models based on the benchmark data below. If you prioritize model accuracy, choose models with higher accuracy. If you prioritize model size, select models with smaller storage requirements. ## Image Classification Module
| Model Name | Top-1 Accuracy (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| MobileNetV3_large_x0_5 | 69.2 | 9.6 | Inference Model/Training Model |
| MobileNetV3_large_x0_35 | 64.3 | 7.5 | Inference Model/Training Model |
| MobileNetV3_large_x0_75 | 73.1 | 14.0 | Inference Model/Training Model |
| MobileNetV3_large_x1_0 | 75.3 | 19.5 | Inference Model/Training Model |
| MobileNetV3_large_x1_25 | 76.4 | 26.5 | Inference Model/Training Model |
| MobileNetV3_small_x0_5 | 59.2 | 6.8 | Inference Model/Training Model |
| MobileNetV3_small_x0_35 | 53.0 | 6.0 | Inference Model/Training Model |
| MobileNetV3_small_x0_75 | 66.0 | 8.5 | Inference Model/Training Model |
| MobileNetV3_small_x1_0 | 68.2 | 10.5 | Inference Model/Training Model |
| MobileNetV3_small_x1_25 | 70.7 | 13.0 | Inference Model/Training Model |
| PP-HGNet_base | 85.0 | 249.4 | Inference Model/Training Model |
| PP-HGNet_small | 81.51 | 86.5 | Inference Model/Training Model |
| PP-HGNet_tiny | 79.83 | 52.4 | Inference Model/Training Model |
| PP-LCNet_x0_5 | 63.14 | 6.7 | Inference Model/Training Model |
| PP-LCNet_x0_25 | 51.86 | 5.5 | Inference Model/Training Model |
| PP-LCNet_x0_35 | 58.09 | 5.9 | Inference Model/Training Model |
| PP-LCNet_x0_75 | 68.18 | 8.4 | Inference Model/Training Model |
| PP-LCNet_x1_0 | 71.32 | 10.5 | Inference Model/Training Model |
| PP-LCNet_x1_5 | 73.71 | 16.0 | Inference Model/Training Model |
| PP-LCNet_x2_0 | 75.18 | 23.2 | Inference Model/Training Model |
| PP-LCNet_x2_5 | 76.60 | 32.1 | Inference Model/Training Model |
| ResNet18_vd | 72.3 | 41.5 | Inference Model/Training Model |
| ResNet18 | 71.0 | 41.5 | Inference Model/Training Model |
| ResNet34_vd | 76.0 | 77.3 | Inference Model/Training Model |
| ResNet34 | 74.6 | 77.3 | Inference Model/Training Model |
| ResNet50_vd | 79.1 | 90.8 | Inference Model/Training Model |
| ResNet50 | 76.5 | 90.8 | Inference Model/Training Model |
| ResNet101_vd | 80.2 | 158.4 | Inference Model/Training Model |
| ResNet101 | 77.6 | 158.7 | Inference Model/Training Model |
| ResNet152_vd | 80.6 | 214.3 | Inference Model/Training Model |
| ResNet152 | 78.3 | 214.2 | Inference Model/Training Model |
| ResNet200_vd | 80.9 | 266.0 | Inference Model/Training Model |
| Model Name | mAP (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PicoDet-L | 42.6 | 20.9 | Inference Model/Training Model |
| PicoDet-M | 37.5 | 16.8 | Inference Model/Training Model |
| PicoDet-S | 29.1 | 4.4 | Inference Model/Training Model |
| PicoDet-XS | 26.2 | 5.7 | Inference Model/Training Model |
| PP-YOLOE_plus-L | 52.9 | 185.3 | Inference Model/Training Model |
| PP-YOLOE_plus-M | 49.8 | 83.2 | Inference Model/Training Model |
| PP-YOLOE_plus-S | 43.7 | 28.3 | Inference Model/Training Model |
| PP-YOLOE_plus-X | 54.7 | 349.4 | Inference Model/Training Model |
| Model Name | mIoU (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PP-LiteSeg-T | 77.04 | 31 | Inference Model/Training Model |
| Model Name | recall@1(%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PP-ShiTuV2_rec_CLIP_vit_base | 88.69 | 306.6 | Inference Model/Training Model |
| PP-ShiTuV2_rec_CLIP_vit_large | 91.03 | 1050 | Inference Model/Training Model |
| Model Name | Avg(%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| STFPM | 96.2 | 21.5 | Inference Model/Training Model |
| Model Name | AP (%) Easy/Medium/Hard |
Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PicoDet_LCNet_x2_5_face | 93.7/90.7/68.1 | 28.9 | Inference Model/Training Model |
| Model Name | Detection Hmean (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_det | 77.79 | 4.2 | Inference Model/Training Model |
| PP-OCRv4_server_det | 82.69 | 100.1 | Inference Model/Training Model |
| Model Name | Recognition Avg Accuracy (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_rec | 78.20 | 10.6 | Inference Model/Training Model |
| PP-OCRv4_server_rec | 79.20 | 71.2 | Inference Model/Training Model |
| Model Name | mAP (%) | Model Storage Size (MB) | Model Download Link |
|---|---|---|---|
| PicoDet_layout_1x | 86.8 | 7.4 | Inference Model/Training Model |
| Model Name | mse | mae | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (MB) | Model Download Link |
|---|---|---|---|---|---|---|
| DLinear | 0.382 | 0.394 | 0.34 / 0.12 | 0.64 / 0.06 | 0.072 | Inference Model/Training Model |
| NLinear | 0.386 | 0.392 | 0.27 / 0.10 | 0.49 / 0.08 | 0.04 | Inference Model/Training Model |
| RLinear | 0.385 | 0.392 | 0.39 / 0.18 | 0.82 / 0.08 | 0.04 | Inference Model/Training Model |