# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Tuple, Union import numpy as np from ....modules.image_unwarping.model_list import MODELS from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ..base import BasePredictor from ..common import Normalize, ToBatch, ToCHWImage from .processors import DocTrPostProcess from .result import DocTrResult class WarpPredictor(BasePredictor): """WarpPredictor that inherits from BasePredictor.""" entities = MODELS def __init__(self, *args: List, **kwargs: Dict) -> None: """Initializes WarpPredictor. Args: *args: Arbitrary positional arguments passed to the superclass. **kwargs: Arbitrary keyword arguments passed to the superclass. """ super().__init__(*args, **kwargs) self.preprocessors, self.infer, self.postprocessors = self._build() def _build_batch_sampler(self) -> ImageBatchSampler: """Builds and returns an ImageBatchSampler instance. Returns: ImageBatchSampler: An instance of ImageBatchSampler. """ return ImageBatchSampler() def _get_result_class(self) -> type: """Returns the warpping result, DocTrResult. Returns: type: The DocTrResult. """ return DocTrResult def _build(self) -> Tuple: """Build the preprocessors, inference engine, and postprocessors based on the configuration. Returns: tuple: A tuple containing the preprocessors, inference engine, and postprocessors. """ preprocessors = {"Read": ReadImage(format="BGR")} preprocessors["Normalize"] = Normalize(mean=0.0, std=1.0, scale=1.0 / 255) preprocessors["ToCHW"] = ToCHWImage() preprocessors["ToBatch"] = ToBatch() infer = self.create_static_infer() postprocessors = {"DocTrPostProcess": DocTrPostProcess()} return preprocessors, infer, postprocessors def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]: """ Process a batch of data through the preprocessing, inference, and postprocessing. Args: batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths). Returns: dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'. """ batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances) batch_imgs = self.preprocessors["Normalize"](imgs=batch_raw_imgs) batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs) x = self.preprocessors["ToBatch"](imgs=batch_imgs) batch_preds = self.infer(x=x) batch_warp_preds = self.postprocessors["DocTrPostProcess"](batch_preds) return { "input_path": batch_data.input_paths, "page_index": batch_data.page_indexes, "input_img": batch_raw_imgs, "doctr_img": batch_warp_preds, }