# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import numpy as np from ....modules.text_detection.model_list import MODELS from ....utils.func_register import FuncRegister from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ..base import BasePredictor from ..common import ToBatch, ToCHWImage from .processors import DBPostProcess, DetResizeForTest, NormalizeImage from .result import TextDetResult class TextDetPredictor(BasePredictor): entities = MODELS _FUNC_MAP = {} register = FuncRegister(_FUNC_MAP) def __init__( self, limit_side_len: Union[int, None] = None, limit_type: Union[str, None] = None, thresh: Union[float, None] = None, box_thresh: Union[float, None] = None, unclip_ratio: Union[float, None] = None, input_shape=None, max_side_limit: int = 4000, *args, **kwargs ): super().__init__(*args, **kwargs) self.limit_side_len = limit_side_len self.limit_type = limit_type self.thresh = thresh self.box_thresh = box_thresh self.unclip_ratio = unclip_ratio self.input_shape = input_shape self.max_side_limit = max_side_limit self.pre_tfs, self.infer, self.post_op = self._build() def _build_batch_sampler(self): return ImageBatchSampler() def _get_result_class(self): return TextDetResult def _build(self): pre_tfs = {"Read": ReadImage(format="RGB")} for cfg in self.config["PreProcess"]["transform_ops"]: tf_key = list(cfg.keys())[0] func = self._FUNC_MAP[tf_key] args = cfg.get(tf_key, {}) name, op = func(self, **args) if args else func(self) if op: pre_tfs[name] = op pre_tfs["ToBatch"] = ToBatch() infer = self.create_static_infer() post_op = self.build_postprocess(**self.config["PostProcess"]) return pre_tfs, infer, post_op def process( self, batch_data: List[Union[str, np.ndarray]], limit_side_len: Union[int, None] = None, limit_type: Union[str, None] = None, thresh: Union[float, None] = None, box_thresh: Union[float, None] = None, unclip_ratio: Union[float, None] = None, max_side_limit: Union[int, None] = None, ): batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances) batch_imgs, batch_shapes = self.pre_tfs["Resize"]( imgs=batch_raw_imgs, limit_side_len=limit_side_len or self.limit_side_len, limit_type=limit_type or self.limit_type, max_side_limit=( max_side_limit if max_side_limit is not None else self.max_side_limit ), ) batch_imgs = self.pre_tfs["Normalize"](imgs=batch_imgs) batch_imgs = self.pre_tfs["ToCHW"](imgs=batch_imgs) x = self.pre_tfs["ToBatch"](imgs=batch_imgs) batch_preds = self.infer(x=x) polys, scores = self.post_op( batch_preds, batch_shapes, thresh=thresh or self.thresh, box_thresh=box_thresh or self.box_thresh, unclip_ratio=unclip_ratio or self.unclip_ratio, ) return { "input_path": batch_data.input_paths, "page_index": batch_data.page_indexes, "input_img": batch_raw_imgs, "dt_polys": polys, "dt_scores": scores, } @register("DecodeImage") def build_readimg(self, channel_first, img_mode): assert channel_first == False return "Read", ReadImage(format=img_mode) @register("DetResizeForTest") def build_resize( self, limit_side_len: Union[int, None] = None, limit_type: Union[str, None] = None, **kwargs ): # TODO: align to PaddleOCR if self.model_name in ( "PP-OCRv5_server_det", "PP-OCRv5_mobile_det", "PP-OCRv4_server_det", "PP-OCRv4_mobile_det", "PP-OCRv3_server_det", "PP-OCRv3_mobile_det", ): limit_side_len = self.limit_side_len or kwargs.get("resize_long", 960) limit_type = self.limit_type or kwargs.get("limit_type", "max") else: limit_side_len = self.limit_side_len or kwargs.get("resize_long", 736) limit_type = self.limit_type or kwargs.get("limit_type", "min") return "Resize", DetResizeForTest( limit_side_len=limit_side_len, limit_type=limit_type, input_shape=self.input_shape, **kwargs ) @register("NormalizeImage") def build_normalize( self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], scale=1 / 255, order="", ): return "Normalize", NormalizeImage(mean=mean, std=std, scale=scale, order=order) @register("ToCHWImage") def build_to_chw(self): return "ToCHW", ToCHWImage() def build_postprocess(self, **kwargs): if kwargs.get("name") == "DBPostProcess": return DBPostProcess( thresh=self.thresh or kwargs.get("thresh", 0.3), box_thresh=self.box_thresh or kwargs.get("box_thresh", 0.6), unclip_ratio=self.unclip_ratio or kwargs.get("unclip_ratio", 2.0), max_candidates=kwargs.get("max_candidates", 1000), use_dilation=kwargs.get("use_dilation", False), score_mode=kwargs.get("score_mode", "fast"), box_type=kwargs.get("box_type", "quad"), ) else: raise Exception() @register("DetLabelEncode") def foo(self, *args, **kwargs): return None, None @register("KeepKeys") def foo(self, *args, **kwargs): return None, None