# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from ..base import BaseEvaluator from .model_list import MODELS class FormulaRecEvaluator(BaseEvaluator): """Text Recognition Model Evaluator""" entities = MODELS def update_config(self): """update evaluation config""" if self.eval_config.log_interval: self.pdx_config.update_log_interval(self.eval_config.log_interval) if self.global_config["model"] == "LaTeX_OCR_rec": self.pdx_config.update_dataset( self.global_config.dataset_dir, "LaTeXOCRDataSet" ) elif self.global_config["model"] in ( "UniMERNet", "PP-FormulaNet-L", "PP-FormulaNet-S", ): self.pdx_config.update_dataset( self.global_config.dataset_dir, "SimpleDataSet" ) label_dict_path = None if self.eval_config.get("label_dict_path"): label_dict_path = self.eval_config.label_dict_path else: label_dict_path = ( Path(self.eval_config.weight_path).parent / "label_dict.txt" ) if not label_dict_path.exists(): label_dict_path = None if label_dict_path is not None: self.pdx_config.update_label_dict_path(label_dict_path) if self.eval_config.batch_size is not None: if self.global_config["model"] == "LaTeX_OCR_rec": self.pdx_config.update_batch_size_pair( self.eval_config.batch_size, mode="eval" ) else: self.pdx_config.update_batch_size( self.eval_config.batch_size, mode="eval" ) if self.eval_config.get("delimiter", None) is not None: self.pdx_config.update_delimiter(self.eval_config.delimiter, mode="eval") def get_eval_kwargs(self) -> dict: """get key-value arguments of model evaluation function Returns: dict: the arguments of evaluation function. """ return { "weight_path": self.eval_config.weight_path, "device": self.get_device(), }