# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..base import BaseEvaluator from .model_list import MODELS class ClsEvaluator(BaseEvaluator): """Image Classification Model Evaluator""" entities = MODELS def update_config(self): """update evaluation config""" if self.eval_config.log_interval: self.pdx_config.update_log_interval(self.eval_config.log_interval) if self.pdx_config["Arch"]["name"] == "DistillationModel": self.pdx_config.update_teacher_model(pretrained=False) self.pdx_config.update_student_model(pretrained=False) self.pdx_config.update_dataset(self.global_config.dataset_dir, "ClsDataset") self.pdx_config.update_pretrained_weights(self.eval_config.weight_path) def get_eval_kwargs(self) -> dict: """get key-value arguments of model evaluation function Returns: dict: the arguments of evaluation function. """ return { "weight_path": self.eval_config.weight_path, "device": self.get_device(using_device_number=1), }