# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tarfile from pathlib import Path from ..base import BaseEvaluator from .model_list import MODELS class TSADEvaluator(BaseEvaluator): """TS Anomaly Detection Model Evaluator""" entities = MODELS def get_config_path(self, weight_path): """ get config path Args: weight_path (str): The path to the weight Returns: config_path (str): The path to the config """ self.uncompress_tar_file() config_path = Path(self.eval_config.weight_path).parent.parent / "config.yaml" return config_path def update_config(self): """update evaluation config""" self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSADDataset") self.pdx_config.update_weights(self.eval_config.weight_path) def uncompress_tar_file(self): """unpackage the tar file containing training outputs and update weight path""" if tarfile.is_tarfile(self.eval_config.weight_path): dest_path = Path(self.eval_config.weight_path).parent with tarfile.open(self.eval_config.weight_path, "r") as tar: tar.extractall(path=dest_path) self.eval_config.weight_path = dest_path.joinpath( "best_accuracy.pdparams/best_model/model.pdparams" ) def get_eval_kwargs(self) -> dict: """get key-value arguments of model evaluation function Returns: dict: the arguments of evaluation function. """ return { "weight_path": self.eval_config.weight_path, "device": self.get_device(using_device_number=1), }