# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ....utils import logging from ....utils.device import parse_device from ....utils.misc import abspath from ...base.utils.arg import CLIArgument from ...base.utils.subprocess import CompletedProcess from ..text_rec.model import TextRecModel class TableRecModel(TextRecModel): """Table Recognition Model""" METRICS = ["acc"] def predict( self, weight_path: str, input_path: str, device: str = "gpu", save_dir: str = None, **kwargs ) -> CompletedProcess: """predict using specified weight Args: weight_path (str): the path of model weight file used to predict. input_path (str): the path of image file to be predicted. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save predict output. Defaults to None. Returns: CompletedProcess: the result of predicting subprocess execution. """ config = self.config.copy() weight_path = abspath(weight_path) config.update_pretrained_weights(weight_path) input_path = abspath(input_path) config._update_infer_img(input_path) # TODO: Handle `device` logging.warning("`device` will not be used.") if save_dir is not None: save_dir = abspath(save_dir) else: save_dir = abspath(config.get_predict_save_dir()) config._update_save_res_path(save_dir) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.predict(config_path, [], device) def infer( self, model_dir: str, input_path: str, device: str = "gpu", save_dir: str = None, **kwargs ) -> CompletedProcess: """predict image using infernece model Args: model_dir (str): the directory path of inference model files that would use to predict. input_path (str): the path of image that would be predict. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save output. Defaults to None. Returns: CompletedProcess: the result of infering subprocess execution. """ config = self.config.copy() cli_args = [] model_dir = abspath(model_dir) cli_args.append(CLIArgument("--table_model_dir", model_dir)) input_path = abspath(input_path) cli_args.append(CLIArgument("--image_dir", input_path)) device_type, _ = parse_device(device) cli_args.append(CLIArgument("--use_gpu", str(device_type == "gpu"))) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join("output", "infer")) cli_args.append(CLIArgument("--output", save_dir)) dict_path = kwargs.pop("dict_path", None) if dict_path is not None: dict_path = abspath(dict_path) else: dict_path = config.get_label_dict_path() cli_args.append(CLIArgument("--table_char_dict_path", dict_path)) model_type = config._get_model_type() cli_args.append(CLIArgument("--table_algorithm", model_type)) infer_shape = config._get_infer_shape() if infer_shape is not None: cli_args.append(CLIArgument("--table_max_len", infer_shape)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.infer(config_path, cli_args, device)