# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ....utils.misc import abspath from ..ts_base.config import BaseTSConfig class LongForecastConfig(BaseTSConfig): """Long Forecast Config""" def update_input_len(self, seq_len: int): """ update the input sequence length Args: seq_len (int): input length Raises: TypeError: if seq_len is not dict, raising TypeError """ if "seq_len" not in self: raise RuntimeError( "Not able to update seq_len, because no seq_len config was found." ) self.set_val("seq_len", seq_len) def update_predict_len(self, predict_len: int): """ updaet the predict sequence length Args: predict_len (int): predict length Raises: RuntimeError: if predict_len is not set, raising RuntimeError """ if "predict_len" not in self: raise RuntimeError( "Not able to update predict_len, because no predict_len config was found." ) self.set_val("predict_len", predict_len) def update_sampling_stride(self, sampling_stride: int): """ updaet the sampling stride of sequence to reduce the training time Args: sampling_stride (int): sampling rate Raises: RuntimeError: if sampling stride is not set, raising RuntimeError """ if "sampling_stride" not in self: raise RuntimeError( "Not able to update sampling_stride, because no sampling_stride config was found." ) self.set_val("sampling_stride", sampling_stride) def update_dataset(self, dataset_dir: str, dataset_type: str = None): """ update the dataset Args: dataset_dir (str): dataset root path dataset_type (str, optional): type to set for dataset. Default='TSDataset' """ if dataset_type is None: dataset_type = "TSDataset" dataset_dir = abspath(dataset_dir) ds_cfg = self._make_custom_dataset_config(dataset_dir) self.update(ds_cfg) def update_basic_info(self, info_params: dict): """ update basic info including time_col, freq, target_cols. Args: info_params (dict): update basic info Raises: TypeError: if info_params is not dict, raising TypeError """ if isinstance(info_params, dict): self.update({"info_params": info_params}) else: raise TypeError("`info_params` must be dict.") def update_patience(self, patience: int): """ update patience. Args: patience (int): update patience Raises: RuntimeError: if patience is not found, raising RuntimeError """ if "patience" not in self.model["model_cfg"]: raise RuntimeError( "Not able to update patience, because no patience config was found." ) self.model["model_cfg"]["patience"] = patience def _make_custom_dataset_config(self, dataset_root_path: str): """construct the dataset config that meets the format requirements Args: dataset_root_path (str): the root directory of dataset. Returns: dict: the dataset config. """ ds_cfg = { "dataset": { "name": "TSDataset", "dataset_root": dataset_root_path, "train_path": os.path.join(dataset_root_path, "train.csv"), "val_path": os.path.join(dataset_root_path, "val.csv"), }, } return ds_cfg