# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import time import tarfile from pathlib import Path from ..base import BaseTrainer from ...utils.config import AttrDict from .model_list import MODELS class TSCLSTrainer(BaseTrainer): """TS Classification Model Trainer""" entities = MODELS def train(self): """firstly, update and dump train config, then train model""" # XXX: using super().train() instead when the train_hook() is supported. os.makedirs(self.global_config.output, exist_ok=True) self.update_config() self.dump_config() train_result = self.pdx_model.train(**self.get_train_kwargs()) assert ( train_result.returncode == 0 ), f"Encountered an unexpected error({train_result.returncode}) in \ training!" self.make_tar_file() def make_tar_file(self): """make tar file to package the training outputs""" tar_path = Path(self.global_config.output) / "best_accuracy.pdparams.tar" with tarfile.open(tar_path, "w") as tar: tar.add(self.global_config.output, arcname="best_accuracy.pdparams") def update_config(self): """update training config""" self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSCLSDataset") if self.train_config.time_col is not None: self.pdx_config.update_basic_info({"time_col": self.train_config.time_col}) if self.train_config.target_cols is not None: self.pdx_config.update_basic_info( {"target_cols": self.train_config.target_cols.split(",")} ) if self.train_config.group_id is not None: self.pdx_config.update_basic_info({"group_id": self.train_config.group_id}) if self.train_config.static_cov_cols is not None: self.pdx_config.update_basic_info( {"static_cov_cols": self.train_config.static_cov_cols} ) if self.train_config.freq is not None: try: self.train_config.freq = int(self.train_config.freq) except ValueError: pass self.pdx_config.update_basic_info({"freq": self.train_config.freq}) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate(self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config.update_epochs(self.train_config.epochs_iters) if self.train_config.log_interval is not None: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.global_config.output is not None: self.pdx_config.update_save_dir(self.global_config.output) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} if self.global_config.output is not None: train_args["save_dir"] = self.global_config.output return train_args