# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import tarfile from pathlib import Path from typing import Any, Dict, List, Union from ....utils import logging from ....utils.cache import CACHE_DIR from ....utils.download import download from .base_batch_sampler import BaseBatchSampler class Det3DBatchSampler(BaseBatchSampler): def __init__(self, temp_dir) -> None: super().__init__() self.temp_dir = temp_dir # XXX: auto download for url def _download_from_url(self, in_path: str) -> str: file_name = Path(in_path).name save_path = Path(CACHE_DIR) / "predict_input" / file_name download(in_path, save_path, overwrite=True) return save_path.as_posix() @property def batch_size(self) -> int: """Gets the batch size.""" return self._batch_size @batch_size.setter def batch_size(self, batch_size: int) -> None: """Sets the batch size. Args: batch_size (int): The batch size to set. """ if batch_size != 1: logging.warning( "inference for 3D models only support batch_size equal to 1" ) self._batch_size = batch_size def load_annotations(self, ann_file: str, data_root_dir: str) -> List[Dict]: """Load annotations from ann_file. Args: ann_file (str): Path of the annotation file. data_root_dir: (str): Path of the data root directory. Returns: list[dict]: List of annotations sorted by timestamps. """ data = pickle.load(open(ann_file, "rb")) data_infos = list(sorted(data["infos"], key=lambda e: e["timestamp"])) # append root_dir to image and lidar filepaths for item in data_infos: # lidar data lidar_path = item["lidar_path"] new_lidar_path = os.path.join(data_root_dir, lidar_path) item["lidar_path"] = new_lidar_path # camera data cam_data = item["cams"] for cam_data_item_key in cam_data: cam_data_item = cam_data[cam_data_item_key] cam_data_item_path = cam_data_item["data_path"] new_cam_data_item_path = os.path.join(data_root_dir, cam_data_item_path) cam_data_item["data_path"] = new_cam_data_item_path # sweep data sweeps = item["sweeps"] for sweep_item in sweeps: sweep_item_path = sweep_item["data_path"] new_sweep_item_path = os.path.join(data_root_dir, sweep_item_path) sweep_item["data_path"] = new_sweep_item_path return data_infos def sample(self, inputs: Union[List[str], str]): if not isinstance(inputs, list): inputs = [inputs] sample_set = [] for input in inputs: if isinstance(input, str): ann_path = ( self._download_from_url(input) if input.startswith("http") else input ) else: logging.warning( f"Not supported input data type! Only `str` is supported! So has been ignored: {input}." ) # extract tar file to tempdir dataset_name = self.extract_tar(ann_path, self.temp_dir) data_root_dir = os.path.join(self.temp_dir, dataset_name) ann_pkl_path = os.path.join(data_root_dir, "nuscenes_infos_val.pkl") self.data_infos = self.load_annotations(ann_pkl_path, data_root_dir) sample_set.extend(self.data_infos) batch = [] for sample in sample_set: batch.append(sample) if len(batch) == self.batch_size: yield batch batch = [] if len(batch) > 0: yield batch def _rand_batch(self, data_size: int) -> List[Any]: raise NotImplementedError( "rand batch is not supported for 3D detection annotation data" ) def extract_tar(self, tar_path, extract_path="."): try: memdirs = set() with tarfile.open(tar_path, "r") as tar: for member in tar.getmembers(): memdir = member.name.split("/")[0] memdirs.add(memdir) tar.extract(member, path=extract_path) logging.info(f"file extract to {extract_path}") assert ( len(memdirs) == 1 ), "Only one base directory is allowed for 3d bev dataset!" return list(memdirs)[0] except Exception as e: logging.error(f"error occurred while extracting tar file") raise e