# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp import random import pickle from PIL import Image, ImageOps from collections import defaultdict from tqdm import tqdm from .....utils.errors import DatasetFileNotFoundError, CheckFailedError from .utils.visualizer import draw_label def check_train(dataset_dir, output, sample_num=10): """check dataset""" dataset_dir = osp.abspath(dataset_dir) # Custom dataset if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) delim = " " valid_num_parts = 2 label_map_dict = dict() sample_paths = [] labels = [] label_file = osp.join(dataset_dir, "label.txt") if not osp.exists(label_file): raise DatasetFileNotFoundError( file_path=label_file, solution=f"Ensure that `label.txt` exist in {dataset_dir}", ) with open(label_file, "r", encoding="utf-8") as f: all_lines = f.readlines() random.seed(123) random.shuffle(all_lines) sample_cnts = len(all_lines) for line in all_lines: substr = line.strip("\n").split(delim) if len(substr) != valid_num_parts: raise CheckFailedError( f"The number of delimiter-separated items in each row in {label_file} \ should be {valid_num_parts} (current delimiter is '{delim}')." ) file_name = substr[0] label = substr[1] img_path = osp.join(dataset_dir, file_name) if not osp.exists(img_path): raise DatasetFileNotFoundError(file_path=img_path) vis_save_dir = osp.join(output, "demo_img") if not osp.exists(vis_save_dir): os.makedirs(vis_save_dir) try: label = int(label) label_map_dict[label] = str(label) except (ValueError, TypeError) as e: raise CheckFailedError( f"Ensure that the second number in each line in {label_file} should be int." ) from e if len(sample_paths) < sample_num: img = Image.open(img_path) img = ImageOps.exif_transpose(img) vis_im = draw_label(img, label, label_map_dict) vis_path = osp.join(vis_save_dir, osp.basename(file_name)) vis_im.save(vis_path) sample_path = osp.join( "check_dataset", os.path.relpath(vis_path, output) ) sample_paths.append(sample_path) labels.append(label) if min(labels) != 0: raise CheckFailedError( f"Ensure that the index starts from 0 in `{label_file}`." ) num_classes = max(labels) + 1 attrs = {} attrs["train_label_file"] = osp.relpath(label_file, output) attrs["train_num_classes"] = num_classes attrs["train_samples"] = sample_cnts attrs["train_sample_paths"] = sample_paths return attrs def check_val(dataset_dir, output, sample_num=10): """check dataset""" dataset_dir = osp.abspath(dataset_dir) # Custom dataset if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir): raise DatasetFileNotFoundError(file_path=dataset_dir) delim = " " valid_num_parts = 3 labels = [] sample_paths = [] label_file = osp.join(dataset_dir, "pair_label.txt") if not osp.exists(label_file): raise DatasetFileNotFoundError( file_path=label_file, solution=f"Ensure that `label.txt` exist in {dataset_dir}", ) with open(label_file, "r", encoding="utf-8") as f: all_lines = f.readlines() random.seed(123) random.shuffle(all_lines) sample_cnts = len(all_lines) for line in all_lines: substr = line.strip("\n").split(delim) if len(substr) != valid_num_parts: raise CheckFailedError( f"The number of delimiter-separated items in each row in {label_file} \ should be {valid_num_parts} (current delimiter is '{delim}')." ) left_file_name = substr[0] right_file_name = substr[1] label = substr[2] left_img_path = osp.join(dataset_dir, left_file_name) if not osp.exists(left_img_path): raise DatasetFileNotFoundError(file_path=left_img_path) right_img_path = osp.join(dataset_dir, right_file_name) if not osp.exists(right_img_path): raise DatasetFileNotFoundError(file_path=right_img_path) try: label = int(label) assert label in [0, 1], "Face eval dataset only support two classes" except (ValueError, TypeError) as e: raise CheckFailedError( f"Ensure that the second number in each line in {label_file} should be int." ) from e vis_save_dir = osp.join(output, "demo_img") if not osp.exists(vis_save_dir): os.makedirs(vis_save_dir) if len(sample_paths) < sample_num: img = Image.open(left_img_path) img = ImageOps.exif_transpose(img) vis_path = osp.join(vis_save_dir, osp.basename(left_file_name)) img.save(vis_path) sample_path = osp.join( "check_dataset", os.path.relpath(vis_path, output) ) sample_paths.append(sample_path) labels.append(label) num_classes = max(labels) + 1 attrs = {} attrs["val_label_file"] = osp.relpath(label_file, output) attrs["val_num_classes"] = num_classes attrs["val_samples"] = sample_cnts attrs["val_sample_paths"] = sample_paths return attrs