# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json from .....utils.file_interface import custom_open from .....utils.errors import ConvertFailedError def check_src_dataset(root_dir, dataset_type): """check src dataset format validity""" if dataset_type in ("LabelMe"): anno_suffix = ".json" else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 LabelMe 格式。" ) err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。" for anno in ["label.txt", "annotations", "images"]: src_anno_path = os.path.join(root_dir, anno) if not os.path.exists(src_anno_path): raise ConvertFailedError( message=f"{err_msg_prefix}保证{src_anno_path}文件存在。" ) return None def convert(dataset_type, input_dir): """convert dataset to multilabel format""" # check format validity check_src_dataset(input_dir, dataset_type) if dataset_type in ("LabelMe"): convert_labelme_dataset(input_dir) else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 LabelMe 格式。" ) def convert_labelme_dataset(root_dir): image_dir = os.path.join(root_dir, "images") anno_path = os.path.join(root_dir, "annotations") label_path = os.path.join(root_dir, "label.txt") train_rate = 50 gallery_rate = 30 query_rate = 20 tags = ["train", "gallery", "query"] label_dict = {} image_files = [] with custom_open(label_path, "r") as f: lines = f.readlines() for idx, line in enumerate(lines): line = line.strip() label_dict[line] = str(idx) for json_file in os.listdir(anno_path): with custom_open(os.path.join(anno_path, json_file), "r") as f: data = json.load(f) filename = data["imagePath"].strip().split("/")[2] image_path = os.path.join("images", filename) for label, value in data["flags"].items(): if value: image_files.append(f"{image_path} {label_dict[label]}\n") start = 0 image_num = len(image_files) rate_list = [train_rate, gallery_rate, query_rate] for i, tag in enumerate(tags): rate = rate_list[i] if rate == 0: continue end = start + round(image_num * rate / 100) if sum(rate_list[i + 1 :]) == 0: end = image_num txt_file = os.path.abspath(os.path.join(root_dir, tag + ".txt")) with custom_open(txt_file, "w") as f: m = 0 for id in range(start, end): m += 1 f.write(image_files[id]) start = end