# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import yaml import codecs from pathlib import Path from abc import abstractmethod from ...components.base import BaseComponent from ...utils.process_hook import generatorable_method class BasePredictor(BaseComponent): KEEP_INPUT = False YIELD_BATCH = False INPUT_KEYS = "input" DEAULT_INPUTS = {"input": "input"} OUTPUT_KEYS = "result" DEAULT_OUTPUTS = {"result": "result"} MODEL_FILE_PREFIX = "inference" def __init__(self, model_dir, config=None): super().__init__() self.model_dir = Path(model_dir) self.config = config if config else self.load_config(self.model_dir) # alias predict() to the __call__() self.predict = self.__call__ def __call__(self, input, **kwargs): self.set_predictor(**kwargs) for res in super().__call__(input): yield res["result"] @property def config_path(self): return self.get_config_path(self.model_dir) @property def model_name(self) -> str: return self.config["Global"]["model_name"] @abstractmethod def apply(self, input): raise NotImplementedError @abstractmethod def set_predictor(self): raise NotImplementedError @classmethod def get_config_path(cls, model_dir): return model_dir / f"{cls.MODEL_FILE_PREFIX}.yml" @classmethod def load_config(cls, model_dir): config_path = cls.get_config_path(model_dir) with codecs.open(config_path, "r", "utf-8") as file: dic = yaml.load(file, Loader=yaml.FullLoader) return dic