# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml from ..ts_base.config import BaseTSConfig from ....utils.misc import abspath class LongForecastConfig(BaseTSConfig): """ Long Forecast Config """ def update_input_len(self, seq_len: int): """ upadte the input sequence length Args: seq_len (int): input length Raises: TypeError: if seq_len is not dict, raising TypeError """ if 'seq_len' not in self: raise RuntimeError( "Not able to update seq_len, because no seq_len config was found." ) self.set_val('seq_len', seq_len) def update_predict_len(self, predict_len: int): """ updaet the predict sequence length Args: predict_len (int): predict length Raises: RuntimeError: if predict_len is not set, raising RuntimeError """ if 'predict_len' not in self: raise RuntimeError( "Not able to update predict_len, because no predict_len config was found." ) self.set_val('predict_len', predict_len) def update_sampling_stride(self, sampling_stride: int): """ updaet the sampling stride of sequence to reduce the training time Args: sampling_stride (int): sampling rate Raises: RuntimeError: if sampling stride is not set, raising RuntimeError """ if 'sampling_stride' not in self: raise RuntimeError( "Not able to update sampling_stride, because no sampling_stride config was found." ) self.set_val('sampling_stride', sampling_stride) def update_dataset(self, dataset_dir: str, dataset_type: str=None): """ upadte the dataset Args: dataset_dir (str): dataset root path dataset_type (str, optional): type to set for dataset. Default='TSDataset' """ if dataset_type is None: dataset_type = 'TSDataset' dataset_dir = abspath(dataset_dir) ds_cfg = self._make_custom_dataset_config(dataset_dir) self.update(ds_cfg) def update_basic_info(self, info_params: dict): """ update basic info including time_col, freq, target_cols. Args: info_params (dict): upadte basic info Raises: TypeError: if info_params is not dict, raising TypeError """ if isinstance(info_params, dict): self.update({'info_params': info_params}) else: raise TypeError("`info_params` must be dict.") def update_patience(self, patience: int): """ update patience. Args: patience (int): upadte patience Raises: RuntimeError: if patience is not found, raising RuntimeError """ if 'patience' not in self.model['model_cfg']: raise RuntimeError( "Not able to update patience, because no patience config was found." ) self.model['model_cfg']['patience'] = patience def _make_custom_dataset_config(self, dataset_root_path: str): """construct the dataset config that meets the format requirements Args: dataset_root_path (str): the root directory of dataset. Returns: dict: the dataset config. """ ds_cfg = { 'dataset': { 'name': 'TSDataset', 'dataset_root': dataset_root_path, 'train_path': os.path.join(dataset_root_path, 'train.csv'), 'val_path': os.path.join(dataset_root_path, 'val.csv'), }, } return ds_cfg