---
comments: true
---
# General Object Detection Pipeline Tutorial
## 1. Introduction to General Object Detection Pipeline
Object detection aims to identify the categories and locations of multiple objects in images or videos by generating bounding boxes to mark these objects. Unlike simple image classification, object detection not only requires recognizing what objects are present in an image, such as people, cars, and animals, but also accurately determining the specific position of each object within the image, typically represented by rectangular boxes. This technology is widely used in autonomous driving, surveillance systems, smart photo albums, and other fields, relying on deep learning models (e.g., YOLO, Faster R-CNN) that can efficiently extract features and perform real-time detection, significantly enhancing the computer's ability to understand image content.
| Model | Model Download Link | mAP(%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Storage Size (M) | Description |
|---|---|---|---|---|---|---|
| PicoDet-L | Inference Model/Trained Model | 42.6 | 16.6715 | 169.904 | 20.9 M | PP-PicoDet is a lightweight object detection algorithm for full-size, wide-angle targets, considering the computational capacity of mobile devices. Compared to traditional object detection algorithms, PP-PicoDet has a smaller model size and lower computational complexity, achieving higher speed and lower latency while maintaining detection accuracy. |
| PicoDet-S | Inference Model/Trained Model | 29.1 | 14.097 | 37.6563 | 4.4 M | |
| PP-YOLOE_plus-L | Inference Model/Trained Model | 52.9 | 33.5644 | 814.825 | 185.3 M | PP-YOLOE_plus is an upgraded version of the high-precision cloud-edge integrated model PP-YOLOE, developed by Baidu's PaddlePaddle vision team. By using the large-scale Objects365 dataset and optimizing preprocessing, it significantly enhances the model's end-to-end inference speed. |
| PP-YOLOE_plus-S | Inference Model/Trained Model | 43.7 | 16.8884 | 223.059 | 28.3 M | |
| RT-DETR-H | Inference Model/Trained Model | 56.3 | 114.814 | 3933.39 | 435.8 M | RT-DETR is the first real-time end-to-end object detector. The model features an efficient hybrid encoder to meet both model performance and throughput requirements, efficiently handling multi-scale features, and proposes an accelerated and optimized query selection mechanism to optimize the dynamics of decoder queries. RT-DETR supports flexible end-to-end inference speeds by using different decoders. |
| RT-DETR-L | Inference Model/Trained Model | 53.0 | 34.5252 | 1454.27 | 113.7 M |
| Model | Model Download Link | mAP(%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size (M) | Description |
|---|---|---|---|---|---|---|
| Cascade-FasterRCNN-ResNet50-FPN | Inference Model/Trained Model | 41.1 | - | - | 245.4 M | Cascade-FasterRCNN is an improved version of the Faster R-CNN object detection model. By coupling multiple detectors and optimizing detection results using different IoU thresholds, it addresses the mismatch problem between training and prediction stages, enhancing the accuracy of object detection. |
| Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN | Inference Model/Trained Model | 45.0 | - | - | 246.2 M | |
| CenterNet-DLA-34 | Inference Model/Trained Model | 37.6 | - | - | 75.4 M | CenterNet is an anchor-free object detection model that treats the keypoints of the object to be detected as a single point—the center point of its bounding box, and performs regression through these keypoints. |
| CenterNet-ResNet50 | Inference Model/Trained Model | 38.9 | - | - | 319.7 M | |
| DETR-R50 | Inference Model/Trained Model | 42.3 | 59.2132 | 5334.52 | 159.3 M | DETR is a transformer-based object detection model proposed by Facebook. It achieves end-to-end object detection without the need for predefined anchor boxes or NMS post-processing strategies. |
| FasterRCNN-ResNet34-FPN | Inference Model/Trained Model | 37.8 | - | - | 137.5 M | Faster R-CNN is a typical two-stage object detection model that first generates region proposals and then performs classification and regression on these proposals. Compared to its predecessors R-CNN and Fast R-CNN, Faster R-CNN's main improvement lies in the region proposal aspect, using a Region Proposal Network (RPN) to provide region proposals instead of traditional selective search. RPN is a Convolutional Neural Network (CNN) that shares convolutional features with the detection network, reducing the computational overhead of region proposals. |
| FasterRCNN-ResNet50-FPN | Inference Model/Trained Model | 38.4 | - | - | 148.1 M | |
| FasterRCNN-ResNet50-vd-FPN | Inference Model/Trained Model | 39.5 | - | - | 148.1 M | |
| FasterRCNN-ResNet50-vd-SSLDv2-FPN | Inference Model/Trained Model | 41.4 | - | - | 148.1 M | |
| FasterRCNN-ResNet50 | Inference Model/Trained Model | 36.7 | - | - | 120.2 M | |
| FasterRCNN-ResNet101-FPN | Inference Model/Trained Model | 41.4 | - | - | 216.3 M | |
| FasterRCNN-ResNet101 | Inference Model/Trained Model | 39.0 | - | - | 188.1 M | |
| FasterRCNN-ResNeXt101-vd-FPN | Inference Model/Trained Model | 43.4 | - | - | 360.6 M | |
| FasterRCNN-Swin-Tiny-FPN | Inference Model/Trained Model | 42.6 | - | - | 159.8 M | |
| FCOS-ResNet50 | Inference Model/Trained Model | 39.6 | 103.367 | 3424.91 | 124.2 M | FCOS is an anchor-free object detection model that performs dense predictions. It uses the backbone of RetinaNet and directly regresses the width and height of the target object on the feature map, predicting the object's category and centerness (the degree of offset of pixels on the feature map from the object's center), which is eventually used as a weight to adjust the object score. |
| PicoDet-L | Inference Model/Trained Model | 42.6 | 16.6715 | 169.904 | 20.9 M | PP-PicoDet is a lightweight object detection algorithm designed for full-size and wide-aspect-ratio targets, with a focus on mobile device computation. Compared to traditional object detection algorithms, PP-PicoDet boasts smaller model sizes and lower computational complexity, achieving higher speeds and lower latency while maintaining detection accuracy. |
| PicoDet-M | Inference Model/Trained Model | 37.5 | 16.2311 | 71.7257 | 16.8 M | |
| PicoDet-S | Inference Model/Trained Model | 29.1 | 14.097 | 37.6563 | 4.4 M | |
| PicoDet-XS | Inference Model/Trained Model | 26.2 | 13.8102 | 48.3139 | 5.7 M | |
| PP-YOLOE_plus-L | Inference Model/Trained Model | 52.9 | 33.5644 | 814.825 | 185.3 M | PP-YOLOE_plus is an iteratively optimized and upgraded version of PP-YOLOE, a high-precision cloud-edge integrated model developed by Baidu PaddlePaddle's Vision Team. By leveraging the large-scale Objects365 dataset and optimizing preprocessing, it significantly enhances the end-to-end inference speed of the model. |
| PP-YOLOE_plus-M | Inference Model/Trained Model | 49.8 | 19.843 | 449.261 | 82.3 M | |
| PP-YOLOE_plus-S | Inference Model/Trained Model | 43.7 | 16.8884 | 223.059 | 28.3 M | |
| PP-YOLOE_plus-X | Inference Model/Trained Model | 54.7 | 57.8995 | 1439.93 | 349.4 M | |
| RT-DETR-H | Inference Model/Trained Model | 56.3 | 114.814 | 3933.39 | 435.8 M | RT-DETR is the first real-time end-to-end object detector. It features an efficient hybrid encoder that balances model performance and throughput, efficiently processes multi-scale features, and introduces an accelerated and optimized query selection mechanism to dynamize decoder queries. RT-DETR supports flexible end-to-end inference speeds through the use of different decoders. |
| RT-DETR-L | Inference Model/Trained Model | 53.0 | 34.5252 | 1454.27 | 113.7 M | |
| RT-DETR-R18 | Inference Model/Trained Model | 46.5 | 19.89 | 784.824 | 70.7 M | |
| RT-DETR-R50 | Inference Model/Trained Model | 53.1 | 41.9327 | 1625.95 | 149.1 M | |
| RT-DETR-X | Inference Model/Trained Model | 54.8 | 61.8042 | 2246.64 | 232.9 M | |
| YOLOv3-DarkNet53 | Inference Model/Trained Model | 39.1 | 40.1055 | 883.041 | 219.7 M | YOLOv3 is a real-time end-to-end object detector that utilizes a unique single Convolutional Neural Network (CNN) to frame the object detection problem as a regression task, enabling real-time detection. The model employs multi-scale detection to enhance performance across different object sizes. |
| YOLOv3-MobileNetV3 | Inference Model/Trained Model | 31.4 | 18.6692 | 267.214 | 83.8 M | |
| YOLOv3-ResNet50_vd_DCN | Inference Model/Trained Model | 40.6 | 31.6276 | 856.047 | 163.0 M | |
| YOLOX-L | Inference Model/Trained Model | 50.1 | 185.691 | 1250.58 | 192.5 M | Building upon YOLOv3's framework, YOLOX significantly boosts detection performance in complex scenarios by incorporating Decoupled Head, Data Augmentation, Anchor Free, and SimOTA components. |
| YOLOX-M | Inference Model/Trained Model | 46.9 | 123.324 | 688.071 | 90.0 M | |
| YOLOX-N | Inference Model/Trained Model | 26.1 | 79.1665 | 155.59 | 3.4 M | |
| YOLOX-S | Inference Model/Trained Model | 40.4 | 184.828 | 474.446 | 32.0 M | |
| YOLOX-T | Inference Model/Trained Model | 32.9 | 102.748 | 212.52 | 18.1 M | |
| YOLOX-X | Inference Model/Trained Model | 51.8 | 227.361 | 2067.84 | 351.5 M |
Note: The precision metrics mentioned are based on the COCO2017 validation set mAP(0.5:0.95). All model GPU inference times are measured on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speeds are based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.
If you are satisfied with the pipeline's performance, you can directly integrate and deploy it. If not, you can also use your private data to fine-tune the model within the pipeline.
### 2.2 Local Experience
Before using the General Object Detection Pipeline locally, ensure you have installed the PaddleX wheel package following the [PaddleX Local Installation Tutorial](../../../installation/installation.md).
#### 2.2.1 Command Line Experience
A single command can quickly experience the effects of the object detection pipeline, Use the [test file](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png), and replace `--input` with the local path to perform prediction.
```bash
paddlex --pipeline object_detection --input general_object_detection_002.png --device gpu:0
```
Parameter Explanation:
```
--pipeline: The name of the pipeline, here it is the object detection pipeline.
--input: The local path or URL of the input image to be processed.
--device: The GPU index to use (e.g., gpu:0 indicates using the first GPU, gpu:1,2 indicates using the second and third GPUs). You can also choose to use CPU (--device cpu).
```
When executing the above command, the default object detection pipeline configuration file is loaded. If you need to customize the configuration file, you can execute the following command to obtain it:
paddlex --get_pipeline_config object_detection
After execution, the object detection pipeline configuration file will be saved in the current path. If you wish to customize the save location, you can execute the following command (assuming the custom save location is ./my_path):
paddlex --get_pipeline_config object_detection --save_path ./my_path
After obtaining the pipeline configuration file, replace --pipeline with the configuration file save path to make the configuration file effective. For example, if the configuration file save path is ./object_detection.yaml, simply execute:
paddlex --pipeline ./object_detection.yaml --input general_object_detection_002.png --device gpu:0
Here, parameters such as --model and --device do not need to be specified, as they will use the parameters in the configuration file. If these parameters are still specified, the specified parameters will take precedence.
The visualized image not saved by default. You can customize the save path through `--save_path`, and then all results will be saved in the specified path.
#### 2.2.2 Integration via Python Scripts
A few lines of code are all you need to quickly perform inference on your production line. Taking General Object Detection as an example:
```python
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="object_detection")
output = pipeline.predict("general_object_detection_002.png")
for res in output:
res.print() # Print the structured output of the prediction
res.save_to_img("./output/") # Save the visualized image of the result
res.save_to_json("./output/") # Save the structured output of the prediction
```
The results obtained are the same as those from the command line method.
In the above Python script, the following steps are executed:
(1) Instantiate the `create_pipeline` to create a pipeline object: The specific parameter descriptions are as follows:
| Parameter | Description | Type | Default |
|---|---|---|---|
pipeline |
The name of the pipeline or the path to the pipeline configuration file. If it's a pipeline name, it must be supported by PaddleX. | str |
None |
device |
The device for pipeline model inference. Supports: "gpu", "cpu". | str |
"gpu" |
enable_hpi |
Whether to enable high-performance inference, only available if the pipeline supports it. | bool |
False |
| Parameter Type | Description |
|---|---|
| Python Var | Supports directly passing Python variables, such as numpy.ndarray representing image data. |
str |
Supports passing the path of the file to be predicted, such as the local path of an image file: /root/data/img.jpg. |
str |
Supports passing the URL of the file to be predicted, such as the network URL of an image file: Example. |
str |
Supports passing a local directory, which should contain files to be predicted, such as the local path: /root/data/. |
dict |
Supports passing a dictionary type, where the key needs to correspond to the specific task, such as "img" for image classification tasks, and the value of the dictionary supports the above data types, e.g., {"img": "/root/data1"}. |
list |
Supports passing a list, where the list elements need to be of the above types, such as [numpy.ndarray, numpy.ndarray], ["/root/data/img1.jpg", "/root/data/img2.jpg"], ["/root/data1", "/root/data2"], [{"img": "/root/data1"}, {"img": "/root/data2/img.jpg"}]. |
| Method | Description | Method Parameters |
|---|---|---|
| Prints results to the terminal | - format_json: bool, whether to format the output content with json indentation, default is True;- indent: int, json formatting setting, only valid when format_json is True, default is 4;- ensure_ascii: bool, json formatting setting, only valid when format_json is True, default is False; |
|
| save_to_json | Saves results as a json file | - save_path: str, the path to save the file, when it's a directory, the saved file name is consistent with the input file type;- indent: int, json formatting setting, default is 4;- ensure_ascii: bool, json formatting setting, default is False; |
| save_to_img | Saves results as an image file | - save_path: str, the path to save the file, when it's a directory, the saved file name is consistent with the input file type; |
For main operations provided by the service:
200, and the response body properties are as follows:| Name | Type | Description |
|---|---|---|
errorCode |
integer |
Error code. Fixed as 0. |
errorMsg |
string |
Error description. Fixed as "Success". |
The response body may also have a result property of type object, which stores the operation result information.
| Name | Type | Description |
|---|---|---|
errorCode |
integer |
Error code. Same as the response status code. |
errorMsg |
string |
Error description. |
Main operations provided by the service are as follows:
inferPerforms object detection on an image.
POST /object-detection
| Name | Type | Description | Required |
|---|---|---|---|
image |
string |
The URL of an image file accessible by the service or the Base64 encoded result of the image file content. | Yes |
result of the response body has the following properties:| Name | Type | Description |
|---|---|---|
detectedObjects |
array |
Information about the location and category of the detected objects. |
image |
string |
The image of the object detection result. The image is in JPEG format and encoded in Base64. |
Each element in detectedObjects is an object with the following properties:
| Name | Type | Description |
|---|---|---|
bbox |
array |
The location of the object. The elements in the array are the x-coordinate of the top-left corner, the y-coordinate of the top-left corner, the x-coordinate of the bottom-right corner, and the y-coordinate of the bottom-right corner of the bounding box, respectively. |
categoryId |
integer |
The ID of the object category. |
score |
number |
The score of the object. |
An example of result is as follows:
{
"detectedObjects": [
{
"bbox": [
404.4967956542969,
90.15770721435547,
506.2465515136719,
285.4187316894531
],
"categoryId": 0,
"score": 0.7418514490127563
},
{
"bbox": [
155.33145141601562,
81.10954284667969,
199.71136474609375,
167.4235382080078
],
"categoryId": 1,
"score": 0.7328268885612488
}
],
"image": "xxxxxx"
}
import base64
import requests
API_URL = "http://localhost:8080/object-detection"
image_path = "./demo.jpg"
output_image_path = "./out.jpg"
with open(image_path, "rb") as file:
image_bytes = file.read()
image_data = base64.b64encode(image_bytes).decode("ascii")
payload = {"image": image_data}
response = requests.post(API_URL, json=payload)
assert response.status_code == 200
result = response.json()["result"]
with open(output_image_path, "wb") as file:
file.write(base64.b64decode(result["image"]))
print(f"Output image saved at {output_image_path}")
print("\nDetected objects:")
print(result["detectedObjects"])
#include <iostream>
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
#include "base64.hpp" // https://github.com/tobiaslocker/base64
int main() {
httplib::Client client("localhost:8080");
const std::string imagePath = "./demo.jpg";
const std::string outputImagePath = "./out.jpg";
httplib::Headers headers = {
{"Content-Type", "application/json"}
};
std::ifstream file(imagePath, std::ios::binary | std::ios::ate);
std::streamsize size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<char> buffer(size);
if (!file.read(buffer.data(), size)) {
std::cerr << "Error reading file." << std::endl;
return 1;
}
std::string bufferStr(reinterpret_cast<const char*>(buffer.data()), buffer.size());
std::string encodedImage = base64::to_base64(bufferStr);
nlohmann::json jsonObj;
jsonObj["image"] = encodedImage;
std::string body = jsonObj.dump();
auto response = client.Post("/object-detection", headers, body, "application/json");
if (response && response->status == 200) {
nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
auto result = jsonResponse["result"];
encodedImage = result["image"];
std::string decodedString = base64::from_base64(encodedImage);
std::vector<unsigned char> decodedImage(decodedString.begin(), decodedString.end());
std::ofstream outputImage(outPutImagePath, std::ios::binary | std::ios::out);
if (outputImage.is_open()) {
outputImage.write(reinterpret_cast<char*>(decodedImage.data()), decodedImage.size());
outputImage.close();
std::cout << "Output image saved at " << outPutImagePath << std::endl;
} else {
std::cerr << "Unable to open file for writing: " << outPutImagePath << std::endl;
}
auto detectedObjects = result["detectedObjects"];
std::cout << "\nDetected objects:" << std::endl;
for (const auto& obj : detectedObjects) {
std::cout << obj << std::endl;
}
} else {
std::cout << "Failed to send HTTP request." << std::endl;
return 1;
}
return 0;
}
import okhttp3.*;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Base64;
public class Main {
public static void main(String[] args) throws IOException {
String API_URL = "http://localhost:8080/object-detection";
String imagePath = "./demo.jpg";
String outputImagePath = "./out.jpg";
File file = new File(imagePath);
byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
String imageData = Base64.getEncoder().encodeToString(fileContent);
ObjectMapper objectMapper = new ObjectMapper();
ObjectNode params = objectMapper.createObjectNode();
params.put("image", imageData);
OkHttpClient client = new OkHttpClient();
MediaType JSON = MediaType.Companion.get("application/json; charset=utf-8");
RequestBody body = RequestBody.Companion.create(params.toString(), JSON);
Request request = new Request.Builder()
.url(API_URL)
.post(body)
.build();
try (Response response = client.newCall(request).execute()) {
if (response.isSuccessful()) {
String responseBody = response.body().string();
JsonNode resultNode = objectMapper.readTree(responseBody);
JsonNode result = resultNode.get("result");
String base64Image = result.get("image").asText();
JsonNode detectedObjects = result.get("detectedObjects");
byte[] imageBytes = Base64.getDecoder().decode(base64Image);
try (FileOutputStream fos = new FileOutputStream(outputImagePath)) {
fos.write(imageBytes);
}
System.out.println("Output image saved at " + outputImagePath);
System.out.println("\nDetected objects: " + detectedObjects.toString());
} else {
System.err.println("Request failed with code: " + response.code());
}
}
}
}
package main
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
)
func main() {
API_URL := "http://localhost:8080/object-detection"
imagePath := "./demo.jpg"
outputImagePath := "./out.jpg"
imageBytes, err := ioutil.ReadFile(imagePath)
if err != nil {
fmt.Println("Error reading image file:", err)
return
}
imageData := base64.StdEncoding.EncodeToString(imageBytes)
payload := map[string]string{"image": imageData}
payloadBytes, err := json.Marshal(payload)
if err != nil {
fmt.Println("Error marshaling payload:", err)
return
}
client := &http.Client{}
req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
if err != nil {
fmt.Println("Error creating request:", err)
return
}
res, err := client.Do(req)
if err != nil {
fmt.Println("Error sending request:", err)
return
}
defer res.Body.Close()
body, err := ioutil.ReadAll(res.Body)
if err != nil {
fmt.Println("Error reading response body:", err)
return
}
type Response struct {
Result struct {
Image string `json:"image"`
DetectedObjects []map[string]interface{} `json:"detectedObjects"`
} `json:"result"`
}
var respData Response
err = json.Unmarshal([]byte(string(body)), &respData)
if err != nil {
fmt.Println("Error unmarshaling response body:", err)
return
}
outputImageData, err := base64.StdEncoding.DecodeString(respData.Result.Image)
if err != nil {
fmt.Println("Error decoding base64 image data:", err)
return
}
err = ioutil.WriteFile(outputImagePath, outputImageData, 0644)
if err != nil {
fmt.Println("Error writing image to file:", err)
return
}
fmt.Printf("Image saved at %s.jpg\n", outputImagePath)
fmt.Println("\nDetected objects:")
for _, obj := range respData.Result.DetectedObjects {
fmt.Println(obj)
}
}
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;
class Program
{
static readonly string API_URL = "http://localhost:8080/object-detection";
static readonly string imagePath = "./demo.jpg";
static readonly string outputImagePath = "./out.jpg";
static async Task Main(string[] args)
{
var httpClient = new HttpClient();
byte[] imageBytes = File.ReadAllBytes(imagePath);
string image_data = Convert.ToBase64String(imageBytes);
var payload = new JObject{ { "image", image_data } };
var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");
HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
response.EnsureSuccessStatusCode();
string responseBody = await response.Content.ReadAsStringAsync();
JObject jsonResponse = JObject.Parse(responseBody);
string base64Image = jsonResponse["result"]["image"].ToString();
byte[] outputImageBytes = Convert.FromBase64String(base64Image);
File.WriteAllBytes(outputImagePath, outputImageBytes);
Console.WriteLine($"Output image saved at {outputImagePath}");
Console.WriteLine("\nDetected objects:");
Console.WriteLine(jsonResponse["result"]["detectedObjects"].ToString());
}
}
const axios = require('axios');
const fs = require('fs');
const API_URL = 'http://localhost:8080/object-detection'
const imagePath = './demo.jpg'
const outputImagePath = "./out.jpg";
let config = {
method: 'POST',
maxBodyLength: Infinity,
url: API_URL,
data: JSON.stringify({
'image': encodeImageToBase64(imagePath)
})
};
function encodeImageToBase64(filePath) {
const bitmap = fs.readFileSync(filePath);
return Buffer.from(bitmap).toString('base64');
}
axios.request(config)
.then((response) => {
const result = response.data["result"];
const imageBuffer = Buffer.from(result["image"], 'base64');
fs.writeFile(outputImagePath, imageBuffer, (err) => {
if (err) throw err;
console.log(`Output image saved at ${outputImagePath}`);
});
console.log("\nDetected objects:");
console.log(result["detectedObjects"]);
})
.catch((error) => {
console.log(error);
});
<?php
$API_URL = "http://localhost:8080/object-detection";
$image_path = "./demo.jpg";
$output_image_path = "./out.jpg";
$image_data = base64_encode(file_get_contents($image_path));
$payload = array("image" => $image_data);
$ch = curl_init($API_URL);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);
$result = json_decode($response, true)["result"];
file_put_contents($output_image_path, base64_decode($result["image"]));
echo "Output image saved at " . $output_image_path . "\n";
echo "\nDetected objects:\n";
print_r($result["detectedObjects"]);
?>