# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import tarfile from typing import Union from ...utils import logging from ..base.build_model import build_model from ..base.predictor import BasePredictor from ...utils.errors import raise_unsupported_api_error, raise_model_not_found_error from .model_list import MODELS from ...utils.download import download from ...utils.cache import CACHE_DIR class TSFCPredictor(BasePredictor): """ TS Forecast Model Predictor """ entities = MODELS def __init__(self, model_name, model_dir, kernel_option, output): """initialize """ model_dir = self._download_from_url(model_dir) self.model_dir = self.uncompress_tar_file(model_dir) self.device = kernel_option.get_device() self.output = output config_path = self.get_config_path() self.pdx_config, self.pdx_model = build_model( model_name, config_path=config_path) def uncompress_tar_file(self, model_dir): """unpackage the tar file containing training outputs and update weight path """ if tarfile.is_tarfile(model_dir): dest_path = Path(model_dir).parent with tarfile.open(model_dir, 'r') as tar: tar.extractall(path=dest_path) return dest_path / "best_accuracy.pdparams/best_model/model.pdparams" return model_dir def get_config_path(self) -> Union[str, None]: """ get config path Returns: config_path (str): The path to the config """ if Path(self.model_dir).exists(): config_path = Path(self.model_dir).parent.parent / "config.yaml" if config_path.exists(): return config_path else: logging.warning( f"The config file(`{config_path}`) related to model weight file(`{self.model_dir}`) \ is not exist, use default instead.") else: raise_model_not_found_error(self.model_dir) return None def _download_from_url(self, in_path): if in_path.startswith("http"): file_name = Path(in_path).name save_path = Path(CACHE_DIR) / "predict_input" / file_name download(in_path, save_path, overwrite=True) return save_path.as_posix() return in_path def predict(self, input): """execute model predict """ # self.update_config() input['input_path'] = self._download_from_url(input['input_path']) result = self.pdx_model.predict(**input, **self.get_predict_kwargs()) assert result.returncode == 0, f"Encountered an unexpected error({result.returncode}) in predicting!" return result def get_predict_kwargs(self) -> dict: """get key-value arguments of model predict function Returns: dict: the arguments of predict function. """ return { "weight_path": self.model_dir, "device": self.device, "save_dir": self.output } def _get_post_transforms_from_config(self): pass def _get_pre_transforms_from_config(self): pass def _run(self): pass def get_input_keys(self): """ get input keys """ return ["input_path"] def get_output_keys(self): """ get output keys """ pass