# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from ...utils.misc import AutoRegisterABCMetaClass def build_pipeline( pipeline_name: str, model_list: list, model_dir_list: list, output: str, device: str, ) -> "BasePipeline": """build model evaluater Args: pipeline_name (str): the pipeline name, that is name of pipeline class Returns: BasePipeline: the pipeline, which is subclass of BasePipeline. """ pipeline = BasePipeline.get(pipeline_name)(output=output, device=device) pipeline.update_model(model_list, model_dir_list) pipeline.load_model() return pipeline class BasePipeline(ABC, metaclass=AutoRegisterABCMetaClass): """Base Pipeline """ __is_base = True def __init__(self): super().__init__() @abstractmethod def load_model(self): """load model predictor """ raise NotImplementedError @abstractmethod def update_model(self, model_name_list, model_dir_list): """update model Args: model_name_list (list): list of model name. model_dir_list (list): list of model directory. """ raise NotImplementedError @abstractmethod def get_input_keys(self): """get dict keys of input argument input """ raise NotImplementedError