# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Tuple, Union import os import sys import cv2 import copy import math import pyclipper import numpy as np from ..common.vision.processors import _BaseResize from ..common.vision import funcs as F from ...utils.benchmark import benchmark @benchmark.timeit class Resize(_BaseResize): """Resize the image.""" def __init__( self, target_size=-1, keep_ratio=False, size_divisor=None, interp="LINEAR" ): """ Initialize the instance. Args: target_size (list|tuple|int, optional): Target width and height. -1 will return the images directly without resizing. keep_ratio (bool, optional): Whether to keep the aspect ratio of resized image. Default: False. size_divisor (int|None, optional): Divisor of resized image size. Default: None. interp (str, optional): Interpolation method. Choices are 'NEAREST', 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'. """ super().__init__(size_divisor=size_divisor, interp=interp) if isinstance(target_size, int): target_size = (target_size, target_size) F.check_image_size(target_size) self.target_size = target_size self.keep_ratio = keep_ratio def __call__(self, imgs, target_size=None): """apply""" target_size = self.target_size if target_size is None else target_size if isinstance(target_size, int): target_size = (target_size, target_size) F.check_image_size(target_size) return [self.resize(img, target_size) for img in imgs] def resize(self, img, target_size): if target_size == (-1, -1): # If the final target_size == (-1, -1), it means use the source input image directly. return img original_size = img.shape[:2][::-1] assert target_size[0] > 0 and target_size[1] > 0 if self.keep_ratio: h, w = img.shape[0:2] target_size, _ = self._rescale_size((w, h), target_size) if self.size_divisor: target_size = [ math.ceil(i / self.size_divisor) * self.size_divisor for i in target_size ] img = F.resize(img, target_size, interp=self.interp) return img @benchmark.timeit class SegPostProcess: """Semantic Segmentation PostProcess This class is responsible for post-processing detection results, only including restoring the prediction segmentation map to the original image size for now. """ def __call__(self, imgs, src_images): assert len(imgs) == len(src_images) src_sizes = [src_image.shape[:2][::-1] for src_image in src_images] return [ self.reverse_resize(img, src_size) for img, src_size in zip(imgs, src_sizes) ] def reverse_resize(self, img, src_size): """Restore the prediction map to source image size using nearest interpolation. Args: img (np.ndarray): prediction map with shape of (1, width, height) src_size (Tuple[int, int]): source size of the input image, with format of (width, height). """ assert isinstance(src_size, (tuple, list)) and len(src_size) == 2 assert src_size[0] > 0 and src_size[1] > 0 assert img.ndim == 3 reversed_img = cv2.resize( img[0], dsize=src_size, interpolation=cv2.INTER_NEAREST ) reversed_img = np.expand_dims(reversed_img, axis=0) return reversed_img