import paddlex as pdx from paddlex import transforms as T # 下载和解压蔬菜分类数据集 veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(veg_dataset, path='./') # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py train_transforms = T.Compose( [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()]) eval_transforms = T.Compose([ T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/imagenet.py#L21 train_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/val_list.txt', label_list='vegetables_cls/labels.txt', transforms=eval_transforms) # 加载模型 model = pdx.load_model('output/mobilenet_v2/best_model') # 在线量化 model.quant_aware_train( num_epochs=5, train_dataset=train_dataset, train_batch_size=32, eval_dataset=eval_dataset, learning_rate=0.000025, save_dir='output/mobilenet_v2/quant', use_vdl=True)