import paddlex as pdx from paddlex import transforms as T # 下载和解压昆虫检测数据集 dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz' pdx.utils.download_and_decompress(dataset, path='./') # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md train_transforms = T.Compose([ T.RandomCrop(), T.RandomHorizontalFlip(), T.RandomDistort(), T.BatchRandomResize( target_sizes=[576, 608, 640, 672, 704], interp='RANDOM'), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) eval_transforms = T.Compose([ T.Resize( target_size=640, interp='CUBIC'), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md train_dataset = pdx.datasets.VOCDetection( data_dir='insect_det', file_list='insect_det/train_list.txt', label_list='insect_det/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir='insect_det', file_list='insect_det/val_list.txt', label_list='insect_det/labels.txt', transforms=eval_transforms, shuffle=False) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md num_classes = len(train_dataset.labels) model = pdx.det.PicoDet(num_classes=num_classes, backbone='ESNet_l') # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md model.train( num_epochs=20, train_dataset=train_dataset, train_batch_size=14, eval_dataset=eval_dataset, pretrain_weights='COCO', learning_rate=.05, warmup_steps=24, warmup_start_lr=0.005, save_interval_epochs=1, lr_decay_epochs=[6, 8, 11], use_ema=True, save_dir='output/picodet_esnet_l', use_vdl=True)