# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import random import numpy as np import cv2 import PIL import os from PIL import Image, ImageDraw, ImageFont from ....utils.fonts import PINGFANG_FONT_FILE_PATH from ..components import CVResult, HtmlMixin, XlsxMixin from typing import Any, Dict, Optional class TableRecognitionResult(CVResult, HtmlMixin, XlsxMixin): """table recognition result""" def __init__(self, data: Dict) -> None: """Initializes the object with given data and sets up mixins for HTML and XLSX processing.""" super().__init__(data) HtmlMixin.__init__(self) # Initializes the HTML mixin functionality XlsxMixin.__init__(self) # Initializes the XLSX mixin functionality def save_to_html(self, save_path: str, *args, **kwargs) -> None: """ Save the content to an HTML file. Args: save_path (str): The path to save the HTML file. If the path does not end with '.html', it will append '/res_table_%d.html' % self['table_region_id'] to the path. *args: Additional positional arguments to be passed to the superclass method. **kwargs: Additional keyword arguments to be passed to the superclass method. Returns: None """ if not str(save_path).lower().endswith(".html"): save_path = save_path + "/res_table_%d.html" % self["table_region_id"] super().save_to_html(save_path, *args, **kwargs) def _to_html(self) -> str: """Converts the prediction to its corresponding HTML representation. Returns: str: The HTML string representation of the prediction. """ return self["pred_html"] def save_to_xlsx(self, save_path: str, *args, **kwargs) -> None: """ Save the content to an Excel file (.xlsx). If the save_path does not end with '.xlsx', it appends a default filename based on the table_region_id attribute. Args: save_path (str): The path where the Excel file should be saved. *args: Additional positional arguments passed to the superclass method. **kwargs: Additional keyword arguments passed to the superclass method. Returns: None """ if not str(save_path).lower().endswith(".xlsx"): save_path = save_path + "/res_table_%d.xlsx" % self["table_region_id"] super().save_to_xlsx(save_path, *args, **kwargs) def _to_xlsx(self) -> str: """Converts the prediction HTML to an XLSX file path. Returns: str: The path to the XLSX file containing the prediction data. """ return self["pred_html"] def save_to_img(self, save_path: str, *args, **kwargs) -> None: """ Save the table and OCR result images to the specified path. Args: save_path (str): The directory path to save the images. *args: Additional positional arguments. **kwargs: Additional keyword arguments. Returns: None Raises: No specific exceptions are raised. Notes: - If save_path does not end with '.jpg' or '.png', the function appends '_res_table_cell_%d.jpg' and '_res_table_ocr_%d.jpg' to save_path with table_region_id respectively for table cell and OCR images. - The OCR result image is saved first with '_res_table_ocr_%d.jpg'. - Then the table image is saved with '_res_table_cell_%d.jpg'. - Calls the superclass's save_to_img method to save the table image. """ if not str(save_path).lower().endswith((".jpg", ".png")): ocr_save_path = ( save_path + "/res_table_ocr_%d.jpg" % self["table_region_id"] ) save_path = save_path + "/res_table_cell_%d.jpg" % self["table_region_id"] self["table_ocr_pred"].save_to_img(ocr_save_path) super().save_to_img(save_path, *args, **kwargs) def _to_img(self) -> np.ndarray: """ Convert the input image with table OCR predictions to an image with cell boundaries highlighted. Returns: np.ndarray: The input image with cell boundaries highlighted in red. """ input_img = self["table_ocr_pred"]["input_img"].copy() cell_box_list = self["cell_box_list"] for box in cell_box_list: x1, y1, x2, y2 = [int(pos) for pos in box] cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2) return input_img class LayoutParsingResult(dict): """Layout Parsing Result""" def __init__(self, data) -> None: """Initializes a new instance of the class with the specified data.""" super().__init__(data) def save_results(self, save_path: str) -> None: """Save the layout parsing results to the specified directory. Args: save_path (str): The directory path to save the results. """ if not os.path.isdir(save_path): return layout_det_res = self["layout_det_res"] save_img_path = save_path + "/layout_det_result.jpg" layout_det_res.save_to_img(save_img_path) input_params = self["input_params"] if input_params["use_doc_preprocessor"]: save_img_path = save_path + "/doc_preprocessor_result.jpg" self["doc_preprocessor_res"].save_to_img(save_img_path) if input_params["use_common_ocr"]: save_img_path = save_path + "/text_paragraphs_ocr_result.jpg" self["text_paragraphs_ocr_res"].save_to_img(save_img_path) if input_params["use_table_recognition"]: for tno in range(len(self["table_res_list"])): table_res = self["table_res_list"][tno] table_res.save_to_img(save_path) table_res.save_to_html(save_path) table_res.save_to_xlsx(save_path) if input_params["use_seal_recognition"]: for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] save_img_path = ( save_path + "/seal_%d_recognition_result.jpg" % seal_res["seal_region_id"] ) seal_res.save_to_img(save_img_path) return