PaddleX

๐ŸŒŸ Features | ๐ŸŒ Online Experience๏ฝœ๐Ÿš€ Quick Start | ๐Ÿ“– Documentation | ๐Ÿ”ฅPipelines List

๐Ÿ‡จ๐Ÿ‡ณ Simplified Chinese | ๐Ÿ‡ฌ๐Ÿ‡ง English
## ๐Ÿ” Introduction PaddleX 3.0 is a low-code development tool for AI models built on the PaddlePaddle framework. It i ntegrates numerous **ready-to-use pre-trained models**, enabling **full-process development** from model training to inference, supporting **a variety of mainstream hardware** both domestic and international, and aiding AI developers in industrial practice. | **Image Classification** | **Multi-label Image Classification** | **Object Detection** | **Instance Segmentation** | |:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:| | | | | | | **Semantic Segmentation** | **Image Anomaly Detection** | **OCR** | **Table Recognition** | | | | | | | **PP-ChatOCRv3** | **Time Series Forecasting** | **Time Series Anomaly Detection** | **Time Series Classification** | | | | | | ## ๐ŸŒŸ Why PaddleX ? ๐Ÿ”ฅ๐Ÿ”ฅใ€ŠPaddleX Document Information Personalized Extraction Upgradeใ€‹๏ผŒPP-ChatOCRv3 innovatively provides OCR model secondary development capabilities based on data fusion technology, with stronger model fine-tuning capabilities. Millions of high-quality general OCR text recognition data are automatically integrated into the vertical model training data at specific ratios, solving the problem of weakening general text recognition capabilities caused by industry-specific model training. Suitable for actual scenarios in industries such as automated office, financial risk control, healthcare, education and publishing, and legal party and government. October 10th (Thursday) 19:00 live broadcast to detail the data fusion technology and how to use prompt engineering to achieve better information extraction effects. ๐ŸŽจ **Rich Models One-click Call**: Integrate over **200 PaddlePaddle models** covering multiple key areas such as OCR, object detection, and time series forecasting into **13 model pipelines**. Experience the model effects quickly through minimalist Python API calls. Also supports **more than 20 modules** for easy model combination use by developers. ๐Ÿš€ **High Efficiency and Low barrier of entry**: Achieve model **full-process development** based on graphical interfaces and unified commands, creating **8 featured model pipelines** that combine large and small models, semi-supervised learning of large models, and multi-model fusion, greatly reducing the cost of iterating models. ๐ŸŒ **Flexible Deployment in Various Scenarios**: Support various deployment methods such as **high-performance deployment**, **service deployment**, and **lite deployment** to ensure efficient operation and rapid response of models in different application scenarios. ๐Ÿ”ง **Efficient Support for Mainstream Hardware**: Support seamless switching of various mainstream hardware such as NVIDIA GPUs, Kunlun XPU, Ascend NPU, and Cambricon MLU to ensure efficient operation. ## ๐Ÿ“ฃ Recent Updates ๐Ÿ”ฅ๐Ÿ”ฅ **9.30, 2024**, PaddleX 3.0 Beta1 open source version is officially released, providing **more than 200 models** that can be called with a minimalist Python API; achieve model full-process development based on unified commands, and open source the basic capabilities of the **PP-ChatOCRv3** featured model pipeline; support **more than 100 models for high-performance inference and service-oriented deployment** (iterating continuously), **more than 7 key visual models for edge-side deployment**; **more than 70 models have been adapted for the full development process of Ascend 910B**, **more than 15 models have been adapted for the full development process of Kunlun chips and Cambricon** ๐Ÿ”ฅ **6.27, 2024**, PaddleX 3.0 Beta open source version is officially released, supporting the use of various mainstream hardware for pipeline and model development in a low-code manner on the local side. ๐Ÿ”ฅ **3.25, 2024**, PaddleX 3.0 cloud release, supporting the creation of pipelines in the AI Studio Galaxy Community in a zero-code manner. ## ๐Ÿ“Š What can PaddleX do๏ผŸ All pipelines of PaddleX support **online experience** and local **fast inference**. You can quickly experience the effects of each pre-trained pipeline. If you are satisfied with the effects of the pre-trained pipeline, you can directly perform [high-performance deployment](./docs/pipeline_deploy/high_performance_deploy_en.md) / [serving deployment](./docs/pipeline_deploy/service_deploy_en.md) / [edge deployment](./docs/pipeline_deploy/lite_deploy_en.md) on the pipeline. If not satisfied, you can also **second development** to improve the pipeline effect. For the complete pipeline development process, please refer to the [PaddleX pipeline Development Tool Local Use Tutorial](./docs/pipeline_usage/pipeline_develop_guide_en.md). In addition, PaddleX provides developers with a full-process efficient model training and deployment tool based on a [cloud-based graphical development interface](https://aistudio.baidu.com/pipeline/mine). Developers **do not need code development**, just need to prepare a dataset that meets the pipeline requirements to **quickly start model training**. For details, please refer to the tutorial ["Developing Industrial-level AI Models with Zero Threshold"](https://aistudio.baidu.com/practical/introduce/546656605663301).
Model pipeline Online Experience Quick Inference High-Performance Deployment Service Deployment Edge Deployment Secondary Development Galaxy Zero-Code pipeline
General OCR Link โœ… โœ… โœ… โœ… โœ… โœ…
Document Scene Information Extraction v3 Link โœ… โœ… โœ… ๐Ÿšง โœ… โœ…
Table Recognition Link โœ… โœ… โœ… ๐Ÿšง โœ… โœ…
General Object Detection Link โœ… โœ… โœ… โœ… โœ… โœ…
General Instance Segmentation Link โœ… โœ… โœ… ๐Ÿšง โœ… โœ…
General Image Classification Link โœ… โœ… โœ… โœ… โœ… โœ…
General Semantic Segmentation Link โœ… โœ… โœ… โœ… โœ… โœ…
Time Series Forecasting Link โœ… ๐Ÿšง โœ… ๐Ÿšง โœ… โœ…
Time Series Anomaly Detection Link โœ… ๐Ÿšง โœ… ๐Ÿšง โœ… โœ…
Time Series Classification Link โœ… ๐Ÿšง โœ… ๐Ÿšง โœ… โœ…
Small Object Detection ๐Ÿšง โœ… โœ… โœ… ๐Ÿšง โœ… ๐Ÿšง
Image Multi-Label Classification ๐Ÿšง โœ… โœ… โœ… ๐Ÿšง โœ… ๐Ÿšง
Image Anomaly Detection ๐Ÿšง โœ… โœ… โœ… ๐Ÿšง โœ… ๐Ÿšง
Formula Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
Seal Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
General Image Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
Pedestrian Attribute Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
Vehicle Attribute Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
Face Recognition ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง ๐Ÿšง
> โ—Note: All the above features are implemented based on GPU/CPU. PaddleX can also perform fast inference and secondary development on mainstream hardware such as Kunlun, Ascend, Cambricon, and Hygon. The following table details the support status of the model pipeline, and for the specific list of supported models, please refer to [Model List (MLU)](./docs/support_list/model_list_mlu_en.md) / [Model List (NPU)](./docs/support_list/model_list_npu_en.md) / [Model List (XPU)](./docs/support_list/model_list_xpu_en.md) / [Model List DCU](./docs/support_list/model_list_dcu_en.md). We are adapting more models and promoting the implementation of high-performance and service-oriented deployment on mainstream hardware.
๐Ÿ‘‰ Support for Domestic Hardware Capabilities
pipeline Name NPU 910B XPU R200/R300 MLU 370X8 DCU Z100
General OCR โœ… โœ… โœ… ๐Ÿšง
Table Recognition โœ… ๐Ÿšง ๐Ÿšง ๐Ÿšง
General Object Detection โœ… โœ… โœ… ๐Ÿšง
General Instance Segmentation โœ… ๐Ÿšง ๐Ÿšง ๐Ÿšง
General Image Classification โœ… โœ… โœ… โœ…
General Semantic Segmentation โœ… โœ… โœ… โœ…
Time Series Forecasting โœ… โœ… โœ… ๐Ÿšง
Time Series Anomaly Detection โœ… ๐Ÿšง ๐Ÿšง ๐Ÿšง
Time Series Classification โœ… ๐Ÿšง ๐Ÿšง ๐Ÿšง
## โญ๏ธ Quick Start ### ๐Ÿ› ๏ธ Installation > โ—Please ensure you have a basic **Python runtime environment** before installing PaddleX. * **Installing PaddlePaddle** ```bash # cpu python -m pip install paddlepaddle==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ # gpu, this command is only applicable to machines with CUDA version 11.8 python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/ # gpu, this command is only applicable to machines with CUDA version 12.3 python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu123/ ``` > โ—For more PaddlePaddle Wheel versions, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation./docs/zh/install/pip/linux-pip.html). * **Installing PaddleX** ```bash pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl ``` > โ—For more installation methods, refer to the [PaddleX Installation Guide](./docs/installation/installation_en.md). ### ๐Ÿ’ป CLI Usage One command can quickly experience the pipeline effect, the unified CLI format is: ```bash paddlex --pipeline [Pipeline Name] --input [Input Image] --device [Running Device] ``` You only need to specify three parameters: * `pipeline`: The name of the pipeline * `input`: The local path or URL of the input image to be processed * `device`: The GPU number used (for example, `gpu:0` means using the 0th GPU), you can also choose to use the CPU (`cpu`) For example, using the OCR pipeline: ```bash paddlex --pipeline OCR --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --device gpu:0 ```
๐Ÿ‘‰ Click to view the running result ```bash {'img_path': '/root/.paddlex/predict_input/general_ocr_002.png', 'dt_polys': [[[5, 12], [88, 10], [88, 29], [5, 31]], [[208, 14], [249, 14], [249, 22], [208, 22]], [[695, 15], [824, 15], [824, 60], [695, 60]], [[158, 27], [355, 23], [356, 70], [159, 73]], [[421, 25], [659, 19], [660, 59], [422, 64]], [[337, 104], [460, 102], [460, 127], [337, 129]], [[486, 103], [650, 100], [650, 125], [486, 128]], [[675, 98], [835, 94], [835, 119], [675, 124]], [[64, 114], [192, 110], [192, 131], [64, 134]], [[210, 108], [318, 106], [318, 128], [210, 130]], [[82, 140], [214, 138], [214, 163], [82, 165]], [[226, 136], [328, 136], [328, 161], [226, 161]], [[404, 134], [432, 134], [432, 161], [404, 161]], [[509, 131], [570, 131], [570, 158], [509, 158]], [[730, 138], [771, 138], [771, 154], [730, 154]], [[806, 136], [817, 136], [817, 146], [806, 146]], [[342, 175], [470, 173], [470, 197], [342, 199]], [[486, 173], [616, 171], [616, 196], [486, 198]], [[677, 169], [813, 166], [813, 191], [677, 194]], [[65, 181], [170, 177], [171, 202], [66, 205]], [[96, 208], [171, 205], [172, 230], [97, 232]], [[336, 220], [476, 215], [476, 237], [336, 242]], [[507, 217], [554, 217], [554, 236], [507, 236]], [[87, 229], [204, 227], [204, 251], [87, 254]], [[344, 240], [483, 236], [483, 258], [344, 262]], [[66, 252], [174, 249], [174, 271], [66, 273]], [[75, 279], [264, 272], [265, 297], [76, 303]], [[459, 297], [581, 295], [581, 320], [459, 322]], [[101, 314], [210, 311], [210, 337], [101, 339]], [[68, 344], [165, 340], [166, 365], [69, 368]], [[345, 350], [662, 346], [662, 368], [345, 371]], [[100, 459], [832, 444], [832, 465], [100, 480]]], 'dt_scores': [0.8183103704439653, 0.7609575621092027, 0.8662357274035412, 0.8619508290334809, 0.8495855993183273, 0.8676840017933314, 0.8807986687956436, 0.822308525056085, 0.8686617037621976, 0.8279022169854463, 0.952332847006758, 0.8742692553015098, 0.8477013022907575, 0.8528771493227294, 0.7622965906848765, 0.8492388224448705, 0.8344203789965632, 0.8078477124353284, 0.6300434587457232, 0.8359967356998494, 0.7618617265751318, 0.9481573079350023, 0.8712182945408912, 0.837416955846334, 0.8292475059403851, 0.7860382856406026, 0.7350527486717117, 0.8701022267947695, 0.87172526903969, 0.8779847108088126, 0.7020437651809734, 0.6611684983372949], 'rec_text': ['www.997', '151', 'PASS', '็™ปๆœบ็‰Œ', 'BOARDING', '่ˆฑไฝ CLASS', 'ๅบๅทSERIALNO.', 'ๅบงไฝๅทSEATNO', '่ˆช็ญ FLIGHT', 'ๆ—ฅๆœŸDATE', 'MU 2379', '03DEC', 'W', '035', 'F', '1', 'ๅง‹ๅ‘ๅœฐFROM', '็™ปๆœบๅฃ GATE', '็™ปๆœบๆ—ถ้—ดBDT', '็›ฎ็š„ๅœฐTO', '็ฆๅทž', 'TAIYUAN', 'G11', 'FUZHOU', '่บซไปฝ่ฏ†ๅˆซIDNO.', 'ๅง“ๅNAME', 'ZHANGQIWEI', '็ฅจๅทTKTNO.', 'ๅผ ็ฅบไผŸ', '็ฅจไปทFARE', 'ETKT7813699238489/1', '็™ปๆœบๅฃไบŽ่ตท้ฃžๅ‰10ๅˆ†้’Ÿๅ…ณ้—ญGATESCLOSE1OMINUTESBEFOREDEPARTURETIME'], 'rec_score': [0.9617719054222107, 0.4199012815952301, 0.9652514457702637, 0.9978302121162415, 0.9853208661079407, 0.9445787072181702, 0.9714463949203491, 0.9841841459274292, 0.9564052224159241, 0.9959094524383545, 0.9386572241783142, 0.9825271368026733, 0.9356589317321777, 0.9985442161560059, 0.3965512812137604, 0.15236201882362366, 0.9976775050163269, 0.9547433257102966, 0.9974752068519592, 0.9646636843681335, 0.9907559156417847, 0.9895358681678772, 0.9374122023582458, 0.9909093379974365, 0.9796401262283325, 0.9899340271949768, 0.992210865020752, 0.9478569626808167, 0.9982215762138367, 0.9924325942993164, 0.9941263794898987, 0.96443772315979]} ...... ``` The visualization result is as follows: ![alt text](https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/main/images/boardingpass.png)
For other pipelines, just adjust the `pipeline` parameter to the corresponding name of the pipeline. Below is a list of each pipeline's corresponding parameter name and detailed usage explanation:
๐Ÿ‘‰ More CLI usage and explanations for pipelines | pipeline Name | Corresponding Parameter | Detailed Explanation | |-------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------| | General Image Classification | `paddlex --pipeline image_classification --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg --device gpu:0` | | General Object Detection | `paddlex --pipeline object_detection --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png --device gpu:0` | | General Instance Segmentation | `paddlex --pipeline instance_segmentation --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_instance_segmentation_004.png --device gpu:0` | | General Semantic Segmentation | `paddlex --pipeline semantic_segmentation --input https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/application/semantic_segmentation/makassaridn-road_demo.png --device gpu:0` | | General Image Multilabel Classification | `paddlex --pipeline multi_label_image_classification --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg --device gpu:0` | | Small Object Detection | `paddlex --pipeline small_object_detection --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/small_object_detection.jpg --device gpu:0` | | Image Anomaly Detection | `paddlex --pipeline anomaly_detection --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/uad_grid.png --device gpu:0` | | General OCR | `paddlex --pipeline OCR --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --device gpu:0` | | General Table Recognition | `paddlex --pipeline table_recognition --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg --device gpu:0` | | General Time Series Forecasting | `paddlex --pipeline ts_fc --input https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_fc.csv --device gpu:0` | | General Time Series Anomaly Detection | `paddlex --pipeline ts_ad --input https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_ad.cs --device gpu:0` | | General Time Series Classification | `paddlex --pipeline ts_cls --input https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_cls.csv --device gpu:0` |
### ๐Ÿ“ Python Script Usage A few lines of code can complete the quick inference of the pipeline, the unified Python script format is as follows: ```python from paddlex import create_pipeline pipeline = create_pipeline(pipeline=[Pipeline Name]) output = pipeline.predict([Input Image Name]) for res in output: res.print() res.save_to_img("./output/") res.save_to_json("./output/") ``` The following steps are executed: * `create_pipeline()` instantiates the pipeline object * Passes the image and calls the `predict` method of the pipeline object for inference prediction * Processes the prediction results For other pipelines in Python scripts, just adjust the `pipeline` parameter of the `create_pipeline()` method to the corresponding name of the pipeline. Below is a list of each pipeline's corresponding parameter name and detailed usage explanation:
๐Ÿ‘‰ More Python script usage for pipelines | pipeline Name | Corresponding Parameter | Detailed Explanation | |-------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------| | PP-ChatOCRv3-doc | `PP-ChatOCRv3-doc` | [PP-ChatOCRv3-doc Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md) | | Image Classification | `image_classification` | [ Image Classification Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/image_classification_en.md) | | Object Detection | `object_detection` | [ Object Detection Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/object_detection_en.md) | | Instance Segmentation | `instance_segmentation` | [ Instance Segmentation Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation_en.md) | | Semantic Segmentation | `semantic_segmentation` | [ Semantic Segmentation Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/semantic_segmentation_en.md) | | Image Multi-Label Classification | `multilabel_classification` | [ Image Multi-Label Classification Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/image_multi_label_classification_en.md) | | Small Object Detection | `small_object_detection` | [Small Object Detection Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/small_object_detection_en.md) | | Image Anomaly Detection | `image_classification` | [Image Anomaly Detection Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection_en.md) | | OCR | `OCR` | [ OCR Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md) | | Form Recognition | `table_recognition` | [ Form Recognition Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_en.md) | | Time Series Forecast | `ts_forecast` | [ Time Series Forecast Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_forecasting_en.md) | | Time Series Anomaly Detection | `ts_anomaly_detection` | [ Time Series Anomaly Detection Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_anomaly_detection_en.md) | | Time Series Classification | `ts_cls` | [ Time Series Classification Pipeline Python Script Usage Instructions](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_classification_en.md) |
## ๐Ÿ“– Documentation
โฌ‡๏ธ Installation * [๐Ÿ“ฆ PaddlePaddle Installation Guide](./docs/installation/paddlepaddle_install_en.md) * [๐Ÿ“ฆ PaddleX Installation Guide](./docs/installation/installation_en.md)
๐Ÿ”ฅ pipeline Usage * [๐Ÿ“‘ PaddleX pipeline Usage Overview](./docs/pipeline_usage/pipeline_develop_guide_en.md) *
๐Ÿ“ Text and Image Intelligent Analysis * [๐Ÿ“„ Document Scene Information Extraction v3 pipeline Usage Guide](./docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md)
*
๐Ÿ” OCR * [๐Ÿ“œ General OCR pipeline Usage Guide](./docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md) * [๐Ÿ“Š Form Recognition pipeline Usage Guide](./docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_en.md)
*
๐ŸŽฅ Computer Vision * [๐Ÿ–ผ๏ธ General Image Classification pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/image_classification_en.md) * [๐ŸŽฏ General Object Detection pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/object_detection_en.md) * [๐Ÿ“‹ General Instance Segmentation pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/instance_segmentation_en.md) * [๐Ÿ—ฃ๏ธ General Semantic Segmentation pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/semantic_segmentation_en.md) * [๐Ÿท๏ธ Image Multi-Label Classification pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/image_multi_label_classification_en.md) * [๐Ÿ” Small Object Detection pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/small_object_detection_en.md) * [๐Ÿ–ผ๏ธ Image Anomaly Detection pipeline Usage Guide](./docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection_en.md)
*
โฑ๏ธ Time Series Analysis * [๐Ÿ“ˆ General Time Series Forecasting pipeline Usage Guide](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_forecasting_en.md) * [๐Ÿ“‰ General Time Series Anomaly Detection pipeline Usage Guide](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_anomaly_detection_en.md) * [๐Ÿ•’ General Time Series Classification pipeline Usage Guide](./docs/pipeline_usage/tutorials/time_series_pipelines/time_series_classification_en.md)
*
๐Ÿ”ง Related Documentation * [๐Ÿ–ฅ๏ธ PaddleX pipeline Command Line Usage Guide](./docs/pipeline_usage/instructions/pipeline_CLI_usage_en.md) * [๐Ÿ“ PaddleX pipeline Python Script Usage Guide](./docs/pipeline_usage/instructions/pipeline_python_API_en.md)
โš™๏ธ Single Function Module Usage *
๐Ÿ” OCR * [๐Ÿ“ Text Detection Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/text_detection_en.md) * [๐Ÿ”– Seal Text Detection Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/seal_text_detection_en.md) * [๐Ÿ”  Text Recognition Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/text_recognition_en.md) * [๐Ÿ—บ๏ธ Layout Area Detection Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) * [๐Ÿ“Š Table Structure Recognition Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md) * [๐Ÿ“„ Document Image Orientation Classification Usage Guide](./docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md) * [๐Ÿ”ง Document Image Correction Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md) * [๐Ÿ“ Formula Recognition Module Usage Guide](./docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md)
*
๐Ÿ–ผ๏ธ Image Classification * [๐Ÿ“‚ Image Classification Module Usage Guide](./docs/module_usage/tutorials/cv_modules/image_classification_en.md) * [๐Ÿท๏ธ Image Multi-Label Classification Module Usage Guide](./docs/module_usage/tutorials/cv_modules/ml_classification_en.md) * [๐Ÿ‘ค Pedestrian Attribute Recognition Module Usage Guide](./docs/module_usage/tutorials/cv_modules/pedestrian_attribute_recognition_en.md) * [๐Ÿš— Vehicle Attribute Recognition Module Usage Guide](./docs/module_usage/tutorials/cv_modules/vehicle_attribute_recognition_en.md)
*
๐Ÿž๏ธ Image Features * [๐Ÿ”— General Image Feature Module Usage Guide](./docs/module_usage/tutorials/cv_modules//image_feature_en.md)
*
๐ŸŽฏ Object Detection * [๐ŸŽฏ Object Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/object_detection_en.md) * [๐Ÿ“ Small Object Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/small_object_detection_en.md) * [๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Face Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/face_detection_en.md) * [๐Ÿ” Main Body Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/mainbody_detection_en.md) * [๐Ÿšถ Pedestrian Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/human_detection_en.md) * [๐Ÿš— Vehicle Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/vehicle_detection_en.md)
*
๐Ÿ–ผ๏ธ Image Segmentation * [๐Ÿ—บ๏ธ Semantic Segmentation Module Usage Guide](./docs/module_usage/tutorials/cv_modules/semantic_segmentation_en.md) * [๐Ÿ” Instance Segmentation Module Usage Guide](./docs/module_usage/tutorials/cv_modules/instance_segmentation_en.md) * [๐Ÿšจ Image Anomaly Detection Module Usage Guide](./docs/module_usage/tutorials/cv_modules/anomaly_detection_en.md)
*
โฑ๏ธ Time Series Analysis * [๐Ÿ“ˆ Time Series Forecasting Module Usage Guide](./docs/module_usage/tutorials/ts_modules/time_series_forecast_en.md) * [๐Ÿšจ Time Series Anomaly Detection Module Usage Guide](./docs/module_usage/tutorials/time_series_modules/time_series_anomaly_detection.md) * [๐Ÿ•’ Time Series Classification Module Usage Guide](./docs/module_usage/tutorials/ts_modules/time_series_classification_en.md)
*
๐Ÿ“„ Related Documentation * [๐Ÿ“ PaddleX Single Model Python Script Usage Guide](./docs/module_usage/instructions/model_python_API_en.md) * [๐Ÿ“ PaddleX General Model Configuration File Parameter Guide](./docs/module_usage/instructions/config_parameters_common_en.md) * [๐Ÿ“ PaddleX Time Series Task Model Configuration File Parameter Guide](./docs/module_usage/instructions/config_parameters_time_series_en.md)
๐Ÿ—๏ธ Model pipeline Deployment * [๐Ÿš€ PaddleX High-Performance Deployment Guide](./docs/pipeline_deploy/high_performance_deploy_en.md) * [๐Ÿ–ฅ๏ธ PaddleX Service Deployment Guide](./docs/pipeline_deploy/service_deploy_en.md) * [๐Ÿ“ฑ PaddleX Edge Deployment Guide](./docs/pipeline_deploy/lite_deploy_en.md)
๐Ÿ–ฅ๏ธ Multi-Hardware Usage * [โš™๏ธ Multi-Hardware Usage Guide](./docs/other_devices_support/installation_other_devices_en.md) * [โš™๏ธ DCU Paddle Installation Guide](./docs/other_devices_support/installation_other_devices_en.md) * [โš™๏ธ MLU Paddle Installation Guide](./docs/other_devices_support/installation_other_devices_en.md) * [โš™๏ธ NPU Paddle Installation Guide](./docs/other_devices_support/installation_other_devices_en.md) * [โš™๏ธ XPU Paddle Installation Guide](./docs/other_devices_support/installation_other_devices_en.md)
๐Ÿ“ Tutorials & Examples * [๐Ÿ–ผ๏ธ General Image Classification Model Line โ€”โ€” Garbage Classification Tutorial](./docs/practical_tutorials/image_classification_garbage_tutorial_en.md) * [๐Ÿงฉ General Instance Segmentation Model Line โ€”โ€” Remote Sensing Image Instance Segmentation Tutorial](./docs/practical_tutorials/instance_segmentation_remote_sensing_tutorial_en.md) * [๐Ÿ‘ฅ General Object Detection Model Line โ€”โ€” Pedestrian Fall Detection Tutorial](./docs/practical_tutorials/object_detection_fall_tutorial_en.md) * [๐Ÿ‘— General Object Detection Model Line โ€”โ€” Fashion Element Detection Tutorial](./docs/practical_tutorials/object_detection_fashion_pedia_tutorial_en.md) * [๐Ÿš— General OCR Model Line โ€”โ€” License Plate Recognition Tutorial](./docs/practical_tutorials/ocr_det_license_tutorial_en.md) * [โœ๏ธ General OCR Model Line โ€”โ€” Handwritten Chinese Character Recognition Tutorial](./docs/practical_tutorials/ocr_rec_chinese_tutorial_en.md) * [๐Ÿ—ฃ๏ธ General Semantic Segmentation Model Line โ€”โ€” Road Line Segmentation Tutorial](./docs/practical_tutorials/semantic_segmentation_road_tutorial_en.md) * [๐Ÿ› ๏ธ Time Series Anomaly Detection Model Line โ€”โ€” Equipment Anomaly Detection Application Tutorial](./docs/practical_tutorials/ts_anomaly_detection_en.md) * [๐ŸŽข Time Series Classification Model Line โ€”โ€” Heartbeat Monitoring Time Series Data Classification Application Tutorial](./docs/practical_tutorials/ts_classification_en.md) * [๐Ÿ”‹ Time Series Forecasting Model Line โ€”โ€” Long-term Electricity Consumption Forecasting Application Tutorial](./docs/practical_tutorials/ts_forecast_en.md)
## ๐Ÿค” FAQ For answers to some common questions about our project, please refer to the [FAQ](./docs/FAQ_en.md). If your question has not been answered, please feel free to raise it in [Issues](https://github.com/PaddlePaddle/PaddleX/issues). ## ๐Ÿ’ฌ Discussion We warmly welcome and encourage community members to raise questions, share ideas, and feedback in the [Discussions](https://github.com/PaddlePaddle/PaddleX/discussions) section. Whether you want to report a bug, discuss a feature request, seek help, or just want to keep up with the latest project news, this is a great platform. ## ๐Ÿ“„ License The release of this project is licensed under the [Apache 2.0 license](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta/LICENSE).