# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ...utils.func_register import FuncRegister from ...modules.object_detection.model_list import MODELS from ..components import * from ..results import DetResult from ..utils.process_hook import batchable_method from .base import CVPredictor class DetPredictor(CVPredictor): entities = MODELS _FUNC_MAP = {} register = FuncRegister(_FUNC_MAP) def _build_components(self): self._add_component(ReadImage(format="RGB")) for cfg in self.config["Preprocess"]: tf_key = cfg["type"] func = self._FUNC_MAP.get(tf_key) cfg.pop("type") args = cfg op = func(self, **args) if args else func(self) self._add_component(op) predictor = ImageDetPredictor( model_dir=self.model_dir, model_prefix=self.MODEL_FILE_PREFIX, option=self.pp_option, ) if self.model_name in [ "RT-DETR-R18", "RT-DETR-R50", "RT-DETR-L", "RT-DETR-H", "RT-DETR-X", ]: predictor.set_inputs( { "img": "img", "scale_factors": "scale_factors", "img_size": "img_size", } ) self._add_component( [ ("Predictor", predictor), DetPostProcess( threshold=self.config["draw_threshold"], labels=self.config["label_list"], ), ] ) @register("Resize") def build_resize(self, target_size, keep_ratio=False, interp=2): assert target_size if isinstance(interp, int): interp = { 0: "NEAREST", 1: "LINEAR", 2: "CUBIC", 3: "AREA", 4: "LANCZOS4", }[interp] op = Resize(target_size=target_size, keep_ratio=keep_ratio, interp=interp) return op @register("NormalizeImage") def build_normalize( self, norm_type=None, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_scale=None, ): if is_scale: scale = 1.0 / 255.0 else: scale = 1 if not norm_type or norm_type == "none": norm_type = "mean_std" if norm_type != "mean_std": mean = 0 std = 1 return Normalize(mean=mean, std=std) @register("Permute") def build_to_chw(self): return ToCHWImage() def _pack_res(self, single): keys = ["img_path", "boxes"] return DetResult({key: single[key] for key in keys})