# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ "get_sub_regions_ocr_res", "get_layout_ordering", "get_single_block_parsing_res", "recursive_img_array2path", "get_show_color", "sorted_layout_boxes", ] import numpy as np from PIL import Image import uuid import re from pathlib import Path from typing import Optional, Union, List, Tuple, Dict, Any from ..ocr.result import OCRResult from ...models.object_detection.result import DetResult from ..components import convert_points_to_boxes def get_overlap_boxes_idx(src_boxes: np.ndarray, ref_boxes: np.ndarray) -> List: """ Get the indices of source boxes that overlap with reference boxes based on a specified threshold. Args: src_boxes (np.ndarray): A 2D numpy array of source bounding boxes. ref_boxes (np.ndarray): A 2D numpy array of reference bounding boxes. Returns: match_idx_list (list): A list of indices of source boxes that overlap with reference boxes. """ match_idx_list = [] src_boxes_num = len(src_boxes) if src_boxes_num > 0 and len(ref_boxes) > 0: for rno in range(len(ref_boxes)): ref_box = ref_boxes[rno] x1 = np.maximum(ref_box[0], src_boxes[:, 0]) y1 = np.maximum(ref_box[1], src_boxes[:, 1]) x2 = np.minimum(ref_box[2], src_boxes[:, 2]) y2 = np.minimum(ref_box[3], src_boxes[:, 3]) pub_w = x2 - x1 pub_h = y2 - y1 match_idx = np.where((pub_w > 3) & (pub_h > 3))[0] match_idx_list.extend(match_idx) return match_idx_list def get_sub_regions_ocr_res( overall_ocr_res: OCRResult, object_boxes: List, flag_within: bool = True, return_match_idx: bool = False, ) -> OCRResult: """ Filters OCR results to only include text boxes within specified object boxes based on a flag. Args: overall_ocr_res (OCRResult): The original OCR result containing all text boxes. object_boxes (list): A list of bounding boxes for the objects of interest. flag_within (bool): If True, only include text boxes within the object boxes. If False, exclude text boxes within the object boxes. return_match_idx (bool): If True, return the list of matching indices. Returns: OCRResult: A filtered OCR result containing only the relevant text boxes. """ sub_regions_ocr_res = {} sub_regions_ocr_res["rec_polys"] = [] sub_regions_ocr_res["rec_texts"] = [] sub_regions_ocr_res["rec_scores"] = [] sub_regions_ocr_res["rec_boxes"] = [] overall_text_boxes = overall_ocr_res["rec_boxes"] match_idx_list = get_overlap_boxes_idx(overall_text_boxes, object_boxes) match_idx_list = list(set(match_idx_list)) for box_no in range(len(overall_text_boxes)): if flag_within: if box_no in match_idx_list: flag_match = True else: flag_match = False else: if box_no not in match_idx_list: flag_match = True else: flag_match = False if flag_match: sub_regions_ocr_res["rec_polys"].append( overall_ocr_res["rec_polys"][box_no] ) sub_regions_ocr_res["rec_texts"].append( overall_ocr_res["rec_texts"][box_no] ) sub_regions_ocr_res["rec_scores"].append( overall_ocr_res["rec_scores"][box_no] ) sub_regions_ocr_res["rec_boxes"].append( overall_ocr_res["rec_boxes"][box_no] ) for key in ["rec_polys", "rec_scores", "rec_boxes"]: sub_regions_ocr_res[key] = np.array(sub_regions_ocr_res[key]) return ( (sub_regions_ocr_res, match_idx_list) if return_match_idx else sub_regions_ocr_res ) def sorted_layout_boxes(res, w): """ Sort text boxes in order from top to bottom, left to right Args: res: List of dictionaries containing layout information. w: Width of image. Returns: List of dictionaries containing sorted layout information. """ num_boxes = len(res) if num_boxes == 1: return res # Sort on the y axis first or sort it on the x axis sorted_boxes = sorted(res, key=lambda x: (x["block_bbox"][1], x["block_bbox"][0])) _boxes = list(sorted_boxes) new_res = [] res_left = [] res_right = [] i = 0 while True: if i >= num_boxes: break # Check that the bbox is on the left elif ( _boxes[i]["block_bbox"][0] < w / 4 and _boxes[i]["block_bbox"][2] < 3 * w / 5 ): res_left.append(_boxes[i]) i += 1 elif _boxes[i]["block_bbox"][0] > 2 * w / 5: res_right.append(_boxes[i]) i += 1 else: new_res += res_left new_res += res_right new_res.append(_boxes[i]) res_left = [] res_right = [] i += 1 res_left = sorted(res_left, key=lambda x: (x["block_bbox"][1])) res_right = sorted(res_right, key=lambda x: (x["block_bbox"][1])) if res_left: new_res += res_left if res_right: new_res += res_right return new_res def _calculate_overlap_area_div_minbox_area_ratio( bbox1: Union[list, tuple], bbox2: Union[list, tuple], ) -> float: """ Calculate the ratio of the overlap area between bbox1 and bbox2 to the area of the smaller bounding box. Args: bbox1 (list or tuple): Coordinates of the first bounding box [x_min, y_min, x_max, y_max]. bbox2 (list or tuple): Coordinates of the second bounding box [x_min, y_min, x_max, y_max]. Returns: float: The ratio of the overlap area to the area of the smaller bounding box. """ bbox1 = list(map(int, bbox1)) bbox2 = list(map(int, bbox2)) x_left = max(bbox1[0], bbox2[0]) y_top = max(bbox1[1], bbox2[1]) x_right = min(bbox1[2], bbox2[2]) y_bottom = min(bbox1[3], bbox2[3]) if x_right <= x_left or y_bottom <= y_top: return 0.0 intersection_area = (x_right - x_left) * (y_bottom - y_top) area_bbox1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1]) area_bbox2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1]) min_box_area = min(area_bbox1, area_bbox2) if min_box_area <= 0: return 0.0 return intersection_area / min_box_area def _whether_y_overlap_exceeds_threshold( bbox1: Union[list, tuple], bbox2: Union[list, tuple], overlap_ratio_threshold: float = 0.6, ) -> bool: """ Determines whether the vertical overlap between two bounding boxes exceeds a given threshold. Args: bbox1 (list or tuple): The first bounding box defined as (left, top, right, bottom). bbox2 (list or tuple): The second bounding box defined as (left, top, right, bottom). overlap_ratio_threshold (float): The threshold ratio to determine if the overlap is significant. Defaults to 0.6. Returns: bool: True if the vertical overlap divided by the minimum height of the two bounding boxes exceeds the overlap_ratio_threshold, otherwise False. """ _, y1_0, _, y1_1 = bbox1 _, y2_0, _, y2_1 = bbox2 overlap = max(0, min(y1_1, y2_1) - max(y1_0, y2_0)) min_height = min(y1_1 - y1_0, y2_1 - y2_0) return (overlap / min_height) > overlap_ratio_threshold def _adjust_span_text(span: List[str], prepend: bool = False, append: bool = False): """ Adjust the text of a span by prepending or appending a newline. Args: span (list): A list where the second element is the text of the span. prepend (bool): If True, prepend a newline to the text. append (bool): If True, append a newline to the text. Returns: None: The function modifies the span in place. """ if prepend: span[1] = "\n" + span[1] if append: span[1] = span[1] + "\n" def _format_line( line: List[List[Union[List[int], str]]], layout_min: int, layout_max: int, is_reference: bool = False, ) -> None: """ Format a line of text spans based on layout constraints. Args: line (list): A list of spans, where each span is a list containing a bounding box and text. layout_min (int): The minimum x-coordinate of the layout bounding box. layout_max (int): The maximum x-coordinate of the layout bounding box. is_reference (bool): A flag indicating whether the line is a reference line, which affects formatting rules. Returns: None: The function modifies the line in place. """ first_span = line[0] end_span = line[-1] if not is_reference: if first_span[0][0] - layout_min > 10: _adjust_span_text(first_span, prepend=True) if layout_max - end_span[0][2] > 10: _adjust_span_text(end_span, append=True) else: if first_span[0][0] - layout_min < 5: _adjust_span_text(first_span, prepend=True) if layout_max - end_span[0][2] > 20: _adjust_span_text(end_span, append=True) def _sort_ocr_res_by_y_projection( label: Any, block_bbox: Tuple[int, int, int, int], ocr_res: Dict[str, List[Any]], line_height_iou_threshold: float = 0.7, ) -> Dict[str, List[Any]]: """ Sorts OCR results based on their spatial arrangement, grouping them into lines and blocks. Args: label (Any): The label associated with the OCR results. It's not used in the function but might be relevant for other parts of the calling context. block_bbox (Tuple[int, int, int, int]): A tuple representing the layout bounding box, defined as (left, top, right, bottom). ocr_res (Dict[str, List[Any]]): A dictionary containing OCR results with the following keys: - "boxes": A list of bounding boxes, each defined as [left, top, right, bottom]. - "rec_texts": A corresponding list of recognized text strings for each box. line_height_iou_threshold (float): The threshold for determining whether two boxes belong to the same line based on their vertical overlap. Defaults to 0.7. Returns: Dict[str, List[Any]]: A dictionary with the same structure as `ocr_res`, but with boxes and texts sorted and grouped into lines and blocks. """ assert ( ocr_res["boxes"] and ocr_res["rec_texts"] ), "OCR results must contain 'boxes' and 'rec_texts'" boxes = ocr_res["boxes"] rec_texts = ocr_res["rec_texts"] x_min, _, x_max, _ = block_bbox inline_x_min = min([box[0] for box in boxes]) inline_x_max = max([box[2] for box in boxes]) spans = list(zip(boxes, rec_texts)) spans.sort(key=lambda span: span[0][1]) spans = [list(span) for span in spans] lines = [] current_line = [spans[0]] current_y0, current_y1 = spans[0][0][1], spans[0][0][3] for span in spans[1:]: y0, y1 = span[0][1], span[0][3] if _whether_y_overlap_exceeds_threshold( (0, current_y0, 0, current_y1), (0, y0, 0, y1), line_height_iou_threshold, ): current_line.append(span) current_y0 = min(current_y0, y0) current_y1 = max(current_y1, y1) else: lines.append(current_line) current_line = [span] current_y0, current_y1 = y0, y1 if current_line: lines.append(current_line) for line in lines: line.sort(key=lambda span: span[0][0]) if label == "reference": line = _format_line(line, inline_x_min, inline_x_max, is_reference=True) else: line = _format_line(line, x_min, x_max) # Flatten lines back into a single list for boxes and texts ocr_res["boxes"] = [span[0] for line in lines for span in line] ocr_res["rec_texts"] = [span[1] + " " for line in lines for span in line] return ocr_res def _process_text(input_text: str) -> str: """ Process the input text to handle spaces. The function removes multiple consecutive spaces between Chinese characters and ensures that only a single space is retained between Chinese and non-Chinese characters. Args: input_text (str): The text to be processed. Returns: str: The processed text with properly formatted spaces. """ def handle_spaces_(text: str) -> str: """ Handle spaces in the text by removing multiple consecutive spaces and inserting a single space between Chinese and non-Chinese characters. Args: text (str): The text to handle spaces for. Returns: str: The text with properly formatted spaces. """ spaces = re.finditer(r"\s+", text) processed_text = list(text) for space in reversed(list(spaces)): start, end = space.span() prev_char = processed_text[start - 1] if start > 0 else "" next_char = processed_text[end] if end < len(processed_text) else "" is_prev_chinese = ( re.match(r"[\u4e00-\u9fff]", prev_char) if prev_char else False ) is_next_chinese = ( re.match(r"[\u4e00-\u9fff]", next_char) if next_char else False ) if is_prev_chinese and is_next_chinese: processed_text[start:end] = [] else: processed_text[start:end] = [" "] return "".join(processed_text) text_without_spaces = handle_spaces_(input_text) final_text = re.sub(r"\s+", " ", text_without_spaces).strip() return final_text def get_single_block_parsing_res( overall_ocr_res: OCRResult, layout_det_res: DetResult, table_res_list: list, seal_res_list: list, ) -> OCRResult: """ Extract structured information from OCR and layout detection results. Args: overall_ocr_res (OCRResult): An object containing the overall OCR results, including detected text boxes and recognized text. The structure is expected to have: - "input_img": The image on which OCR was performed. - "dt_boxes": A list of detected text box coordinates. - "rec_texts": A list of recognized text corresponding to the detected boxes. layout_det_res (DetResult): An object containing the layout detection results, including detected layout boxes and their labels. The structure is expected to have: - "boxes": A list of dictionaries with keys "coordinate" for box coordinates and "block_label" for the type of content. table_res_list (list): A list of table detection results, where each item is a dictionary containing: - "block_bbox": The bounding box of the table layout. - "pred_html": The predicted HTML representation of the table. seal_res_list (List): A list of seal detection results. The details of each item depend on the specific application context. Returns: list: A list of structured boxes where each item is a dictionary containing: - "block_label": The label of the content (e.g., 'table', 'chart', 'image'). - The label as a key with either table HTML or image data and text. - "block_bbox": The coordinates of the layout box. """ single_block_layout_parsing_res = [] input_img = overall_ocr_res["doc_preprocessor_res"]["output_img"] seal_index = 0 for box_info in layout_det_res["boxes"]: block_bbox = box_info["coordinate"] label = box_info["label"] rec_res = {"boxes": [], "rec_texts": [], "flag": False} seg_start_flag = True seg_end_flag = True if label == "table": for table_res in table_res_list: if ( _calculate_overlap_area_div_minbox_area_ratio( block_bbox, table_res["cell_box_list"][0] ) > 0.5 ): single_block_layout_parsing_res.append( { "block_label": label, "block_content": table_res["pred_html"], "block_bbox": block_bbox, "seg_start_flag": seg_start_flag, "seg_end_flag": seg_end_flag, }, ) break elif label == "seal": if len(seal_res_list) > 0: single_block_layout_parsing_res.append( { "block_label": label, "block_content": _process_text( ", ".join(seal_res_list[seal_index]["rec_texts"]) ), "block_bbox": block_bbox, "seg_start_flag": seg_start_flag, "seg_end_flag": seg_end_flag, }, ) seal_index += 1 else: overall_text_boxes = overall_ocr_res["rec_boxes"] for box_no in range(len(overall_text_boxes)): if ( _calculate_overlap_area_div_minbox_area_ratio( block_bbox, overall_text_boxes[box_no] ) > 0.5 ): rec_res["boxes"].append(overall_text_boxes[box_no]) rec_res["rec_texts"].append( overall_ocr_res["rec_texts"][box_no], ) rec_res["flag"] = True if rec_res["flag"]: rec_res = _sort_ocr_res_by_y_projection(label, block_bbox, rec_res, 0.7) rec_res_first_bbox = rec_res["boxes"][0] rec_res_end_bbox = rec_res["boxes"][-1] if rec_res_first_bbox[0] - block_bbox[0] < 10: seg_start_flag = False if block_bbox[2] - rec_res_end_bbox[2] < 10: seg_end_flag = False if label == "formula": rec_res["rec_texts"] = [ rec_res_text.replace("$", "") for rec_res_text in rec_res["rec_texts"] ] if label in ["chart", "image"]: single_block_layout_parsing_res.append( { "block_label": label, "block_content": _process_text("".join(rec_res["rec_texts"])), "block_image": input_img[ int(block_bbox[1]) : int(block_bbox[3]), int(block_bbox[0]) : int(block_bbox[2]), ], "block_bbox": block_bbox, "seg_start_flag": seg_start_flag, "seg_end_flag": seg_end_flag, }, ) else: single_block_layout_parsing_res.append( { "block_label": label, "block_content": _process_text("".join(rec_res["rec_texts"])), "block_bbox": block_bbox, "seg_start_flag": seg_start_flag, "seg_end_flag": seg_end_flag, }, ) single_block_layout_parsing_res = get_layout_ordering( single_block_layout_parsing_res, no_mask_labels=[ "text", "formula", "algorithm", "reference", "content", "abstract", ], ) return single_block_layout_parsing_res def _projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray: """ Generate a 1D projection histogram from bounding boxes along a specified axis. Args: boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max]. axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis). Returns: A 1D numpy array representing the projection histogram based on bounding box intervals. """ assert axis in [0, 1] max_length = np.max(boxes[:, axis::2]) projection = np.zeros(max_length, dtype=int) # Increment projection histogram over the interval defined by each bounding box for start, end in boxes[:, axis::2]: projection[start:end] += 1 return projection def _split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float): """ Split the projection profile into segments based on specified thresholds. Args: arr_values: 1D array representing the projection profile. min_value: Minimum value threshold to consider a profile segment significant. min_gap: Minimum gap width to consider a separation between segments. Returns: A tuple of start and end indices for each segment that meets the criteria. """ # Identify indices where the projection exceeds the minimum value significant_indices = np.where(arr_values > min_value)[0] if not len(significant_indices): return # Calculate gaps between significant indices index_diffs = significant_indices[1:] - significant_indices[:-1] gap_indices = np.where(index_diffs > min_gap)[0] # Determine start and end indices of segments segment_starts = np.insert( significant_indices[gap_indices + 1], 0, significant_indices[0], ) segment_ends = np.append( significant_indices[gap_indices], significant_indices[-1] + 1, ) return segment_starts, segment_ends def _recursive_yx_cut( boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1 ): """ Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis. Args: boxes: A (N, 4) array representing bounding boxes. indices: List of indices indicating the original position of boxes. res: List to store indices of the final segmented bounding boxes. min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1. Returns: None: This function modifies the `res` list in place. """ assert len(boxes) == len( indices ), "The length of boxes and indices must be the same." # Sort by y_min for Y-axis projection y_sorted_indices = boxes[:, 1].argsort() y_sorted_boxes = boxes[y_sorted_indices] y_sorted_indices = np.array(indices)[y_sorted_indices] # Perform Y-axis projection y_projection = _projection_by_bboxes(boxes=y_sorted_boxes, axis=1) y_intervals = _split_projection_profile(y_projection, 0, 1) if not y_intervals: return # Process each segment defined by Y-axis projection for y_start, y_end in zip(*y_intervals): # Select boxes within the current y interval y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & ( y_sorted_boxes[:, 1] < y_end ) y_boxes_chunk = y_sorted_boxes[y_interval_indices] y_indices_chunk = y_sorted_indices[y_interval_indices] # Sort by x_min for X-axis projection x_sorted_indices = y_boxes_chunk[:, 0].argsort() x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices] x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices] # Perform X-axis projection x_projection = _projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0) x_intervals = _split_projection_profile(x_projection, 0, min_gap) if not x_intervals: continue # If X-axis cannot be further segmented, add current indices to results if len(x_intervals[0]) == 1: res.extend(x_sorted_indices_chunk) continue # Recursively process each segment defined by X-axis projection for x_start, x_end in zip(*x_intervals): x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & ( x_sorted_boxes_chunk[:, 0] < x_end ) _recursive_yx_cut( x_sorted_boxes_chunk[x_interval_indices], x_sorted_indices_chunk[x_interval_indices], res, ) def _recursive_xy_cut( boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1 ): """ Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes. Args: boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max]. indices: A list of indices representing the position of boxes in the original data. res: A list to store indices of bounding boxes that meet the criteria. min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1. Returns: None: This function modifies the `res` list in place. """ # Ensure boxes and indices have the same length assert len(boxes) == len( indices ), "The length of boxes and indices must be the same." # Sort by x_min to prepare for X-axis projection x_sorted_indices = boxes[:, 0].argsort() x_sorted_boxes = boxes[x_sorted_indices] x_sorted_indices = np.array(indices)[x_sorted_indices] # Perform X-axis projection x_projection = _projection_by_bboxes(boxes=x_sorted_boxes, axis=0) x_intervals = _split_projection_profile(x_projection, 0, 1) if not x_intervals: return # Process each segment defined by X-axis projection for x_start, x_end in zip(*x_intervals): # Select boxes within the current x interval x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & ( x_sorted_boxes[:, 0] < x_end ) x_boxes_chunk = x_sorted_boxes[x_interval_indices] x_indices_chunk = x_sorted_indices[x_interval_indices] # Sort selected boxes by y_min to prepare for Y-axis projection y_sorted_indices = x_boxes_chunk[:, 1].argsort() y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices] y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices] # Perform Y-axis projection y_projection = _projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1) y_intervals = _split_projection_profile(y_projection, 0, min_gap) if not y_intervals: continue # If Y-axis cannot be further segmented, add current indices to results if len(y_intervals[0]) == 1: res.extend(y_sorted_indices_chunk) continue # Recursively process each segment defined by Y-axis projection for y_start, y_end in zip(*y_intervals): y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & ( y_sorted_boxes_chunk[:, 1] < y_end ) _recursive_xy_cut( y_sorted_boxes_chunk[y_interval_indices], y_sorted_indices_chunk[y_interval_indices], res, ) def sort_by_xycut( block_bboxes: Union[np.ndarray, List[List[int]]], direction: int = 0, min_gap: int = 1, ) -> List[int]: """ Sort bounding boxes using recursive XY cut method based on the specified direction. Args: block_bboxes (Union[np.ndarray, List[List[int]]]): An array or list of bounding boxes, where each box is represented as [x_min, y_min, x_max, y_max]. direction (int): Direction for the initial cut. Use 1 for Y-axis first and 0 for X-axis first. Defaults to 0. min_gap (int): Minimum gap width to consider a separation between segments. Defaults to 1. Returns: List[int]: A list of indices representing the order of sorted bounding boxes. """ block_bboxes = np.asarray(block_bboxes).astype(int) res = [] if direction == 1: _recursive_yx_cut( block_bboxes, np.arange(len(block_bboxes)).tolist(), res, min_gap, ) else: _recursive_xy_cut( block_bboxes, np.arange(len(block_bboxes)).tolist(), res, min_gap, ) return res def _img_array2path(data: np.ndarray) -> str: """ Save an image array to disk and return the relative file path. Args: data (np.ndarray): An image represented as a numpy array with 3 dimensions (H, W, C). Returns: dict: A dictionary with a single key-value pair formatted as: {"imgs/image_{uuid4_hex}.png": PIL.Image.Image} Raises: ValueError: If the input data is not a valid image array. """ if isinstance(data, np.ndarray) and data.ndim == 3: # Generate a unique filename using UUID img_name = f"image_{uuid.uuid4().hex}.png" return {f"imgs/{img_name}": Image.fromarray(data[:, :, ::-1])} else: raise ValueError( "Input data must be a 3-dimensional numpy array representing an image." ) def recursive_img_array2path( data: Union[Dict[str, Any], List[Any]], labels: List[str] = [], ) -> None: """ Recursively process a dictionary or list to save image arrays to disk and replace them with file paths. Args: data (Union[Dict[str, Any], List[Any]]): The data structure that may contain image arrays. save_path (Union[str, Path]): The base path where images should be saved. labels (List[str]): List of keys to check for image arrays in dictionaries. Returns: None: This function modifies the input data structure in place. """ if isinstance(data, dict): for k, v in data.items(): if k in labels and isinstance(v, np.ndarray) and v.ndim == 3: data[k] = _img_array2path(v) else: recursive_img_array2path(v, labels) elif isinstance(data, list): for item in data: recursive_img_array2path(item, labels) def _get_minbox_if_overlap_by_ratio( bbox1: Union[List[int], Tuple[int, int, int, int]], bbox2: Union[List[int], Tuple[int, int, int, int]], ratio: float, smaller: bool = True, ) -> Optional[Union[List[int], Tuple[int, int, int, int]]]: """ Determine if the overlap area between two bounding boxes exceeds a given ratio and return the smaller (or larger) bounding box based on the `smaller` flag. Args: bbox1 (Union[List[int], Tuple[int, int, int, int]]): Coordinates of the first bounding box [x_min, y_min, x_max, y_max]. bbox2 (Union[List[int], Tuple[int, int, int, int]]): Coordinates of the second bounding box [x_min, y_min, x_max, y_max]. ratio (float): The overlap ratio threshold. smaller (bool): If True, return the smaller bounding box; otherwise, return the larger one. Returns: Optional[Union[List[int], Tuple[int, int, int, int]]]: The selected bounding box or None if the overlap ratio is not exceeded. """ # Calculate the areas of both bounding boxes area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1]) area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1]) # Calculate the overlap ratio using a helper function overlap_ratio = _calculate_overlap_area_div_minbox_area_ratio(bbox1, bbox2) # Check if the overlap ratio exceeds the threshold if overlap_ratio > ratio: if (area1 <= area2 and smaller) or (area1 >= area2 and not smaller): return 1 else: return 2 return None def _remove_overlap_blocks( blocks: List[Dict[str, List[int]]], threshold: float = 0.65, smaller: bool = True ) -> Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]: """ Remove overlapping blocks based on a specified overlap ratio threshold. Args: blocks (List[Dict[str, List[int]]]): List of block dictionaries, each containing a 'block_bbox' key. threshold (float): Ratio threshold to determine significant overlap. smaller (bool): If True, the smaller block in overlap is removed. Returns: Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]: A tuple containing the updated list of blocks and a list of dropped blocks. """ dropped_blocks = [] dropped_indexes = set() # Iterate over each pair of blocks to find overlaps for i, block1 in enumerate(blocks): for j in range(i + 1, len(blocks)): block2 = blocks[j] # Skip blocks that are already marked for removal if i in dropped_indexes or j in dropped_indexes: continue # Check for overlap and determine which block to remove overlap_box_index = _get_minbox_if_overlap_by_ratio( block1["block_bbox"], block2["block_bbox"], threshold, smaller=smaller, ) if overlap_box_index is not None: # Determine which block to remove based on overlap_box_index if overlap_box_index == 1: drop_index = i else: drop_index = j dropped_indexes.add(drop_index) # Remove marked blocks from the original list for index in sorted(dropped_indexes, reverse=True): dropped_blocks.append(blocks[index]) del blocks[index] return blocks, dropped_blocks def _get_text_median_width(blocks: List[Dict[str, any]]) -> float: """ Calculate the median width of blocks labeled as "text". Args: blocks (List[Dict[str, any]]): List of block dictionaries, each containing a 'block_bbox' and 'label'. Returns: float: The median width of text blocks, or infinity if no text blocks are found. """ widths = [ block["block_bbox"][2] - block["block_bbox"][0] for block in blocks if block.get("block_label") == "text" ] return np.median(widths) if widths else float("inf") def _get_layout_property( blocks: List[Dict[str, any]], median_width: float, no_mask_labels: List[str], threshold: float = 0.8, ) -> Tuple[List[Dict[str, any]], bool]: """ Determine the layout (single or double column) of text blocks. Args: blocks (List[Dict[str, any]]): List of block dictionaries containing 'label' and 'block_bbox'. median_width (float): Median width of text blocks. no_mask_labels (List[str]): Labels of blocks to be considered for layout analysis. threshold (float): Threshold for determining layout overlap. Returns: Tuple[List[Dict[str, any]], bool]: Updated list of blocks with layout information and a boolean indicating if the double layout area is greater than the single layout area. """ blocks.sort( key=lambda x: ( x["block_bbox"][0], (x["block_bbox"][2] - x["block_bbox"][0]), ), ) check_single_layout = {} page_min_x, page_max_x = float("inf"), 0 double_label_area = 0 single_label_area = 0 for i, block in enumerate(blocks): page_min_x = min(page_min_x, block["block_bbox"][0]) page_max_x = max(page_max_x, block["block_bbox"][2]) page_width = page_max_x - page_min_x for i, block in enumerate(blocks): if block["block_label"] not in no_mask_labels: continue x_min_i, _, x_max_i, _ = block["block_bbox"] layout_length = x_max_i - x_min_i cover_count, cover_with_threshold_count = 0, 0 match_block_with_threshold_indexes = [] for j, other_block in enumerate(blocks): if i == j or other_block["block_label"] not in no_mask_labels: continue x_min_j, _, x_max_j, _ = other_block["block_bbox"] x_match_min, x_match_max = max( x_min_i, x_min_j, ), min(x_max_i, x_max_j) match_block_iou = (x_match_max - x_match_min) / (x_max_j - x_min_j) if match_block_iou > 0: cover_count += 1 if match_block_iou > threshold: cover_with_threshold_count += 1 match_block_with_threshold_indexes.append( (j, match_block_iou), ) x_min_i = x_match_max if x_min_i >= x_max_i: break if ( layout_length > median_width * 1.3 and (cover_with_threshold_count >= 2 or cover_count >= 2) ) or layout_length > 0.6 * page_width: # if layout_length > median_width * 1.3 and (cover_with_threshold_count >= 2): block["layout"] = "double" double_label_area += (block["block_bbox"][2] - block["block_bbox"][0]) * ( block["block_bbox"][3] - block["block_bbox"][1] ) else: block["layout"] = "single" check_single_layout[i] = match_block_with_threshold_indexes # Check single-layout block for i, single_layout in check_single_layout.items(): if single_layout: index, match_iou = single_layout[-1] if match_iou > 0.9 and blocks[index]["layout"] == "double": blocks[i]["layout"] = "double" double_label_area += ( blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0] ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1]) else: single_label_area += ( blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0] ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1]) return blocks, (double_label_area > single_label_area) def _get_bbox_direction(input_bbox: List[float], ratio: float = 1.0) -> bool: """ Determine if a bounding box is horizontal or vertical. Args: input_bbox (List[float]): Bounding box [x_min, y_min, x_max, y_max]. ratio (float): Ratio for determining orientation. Default is 1.0. Returns: bool: True if the bounding box is considered horizontal, False if vertical. """ width = input_bbox[2] - input_bbox[0] height = input_bbox[3] - input_bbox[1] return width * ratio >= height def _get_projection_iou( input_bbox: List[float], match_bbox: List[float], is_horizontal: bool = True ) -> float: """ Calculate the IoU of lines between two bounding boxes. Args: input_bbox (List[float]): First bounding box [x_min, y_min, x_max, y_max]. match_bbox (List[float]): Second bounding box [x_min, y_min, x_max, y_max]. is_horizontal (bool): Whether to compare horizontally or vertically. Returns: float: Line IoU. Returns 0 if there is no overlap. """ if is_horizontal: x_match_min = max(input_bbox[0], match_bbox[0]) x_match_max = min(input_bbox[2], match_bbox[2]) overlap = max(0, x_match_max - x_match_min) input_width = min(input_bbox[2] - input_bbox[0], match_bbox[2] - match_bbox[0]) else: y_match_min = max(input_bbox[1], match_bbox[1]) y_match_max = min(input_bbox[3], match_bbox[3]) overlap = max(0, y_match_max - y_match_min) input_width = min(input_bbox[3] - input_bbox[1], match_bbox[3] - match_bbox[1]) return overlap / input_width if input_width > 0 else 0.0 def _get_sub_category( blocks: List[Dict[str, Any]], title_labels: List[str] ) -> Tuple[List[Dict[str, Any]], List[float]]: """ Determine the layout of title and text blocks and collect pre_cuts. Args: blocks (List[Dict[str, Any]]): List of block dictionaries. title_labels (List[str]): List of labels considered as titles. Returns: List[Dict[str, Any]]: Updated list of blocks with title-text layout information. Dict[float]: Dict of pre_cuts coordinates. """ sub_title_labels = ["paragraph_title"] vision_labels = ["image", "table", "chart", "figure"] vision_title_labels = ["figure_title", "chart_title", "table_title"] all_labels = title_labels + sub_title_labels + vision_labels + vision_title_labels special_pre_cut_labels = title_labels + sub_title_labels min_x = min(block["block_bbox"][0] for block in blocks) min_y = min(block["block_bbox"][1] for block in blocks) max_x = max(block["block_bbox"][2] for block in blocks) max_y = max(block["block_bbox"][3] for block in blocks) region_bbox = (min_x, min_y, max_x, max_y) region_x_center = (region_bbox[0] + region_bbox[2]) / 2 region_y_center = (region_bbox[1] + region_bbox[3]) / 2 region_width = region_bbox[2] - region_bbox[0] region_height = region_bbox[3] - region_bbox[1] pre_cuts = {} for i, block1 in enumerate(blocks): block1.setdefault("title_text", []) block1.setdefault("sub_title", []) block1.setdefault("vision_footnote", []) block1.setdefault("sub_label", block1["block_label"]) if block1["block_label"] not in all_labels: continue bbox1 = block1["block_bbox"] x1, y1, x2, y2 = bbox1 is_horizontal_1 = _get_bbox_direction(block1["block_bbox"]) left_up_title_text_distance = float("inf") left_up_title_text_index = -1 left_up_title_text_direction = None right_down_title_text_distance = float("inf") right_down_title_text_index = -1 right_down_title_text_direction = None # pre-cuts # Condition 1: Length is greater than half of the layout region if is_horizontal_1: block_length = x2 - x1 required_length = region_width / 2 else: block_length = y2 - y1 required_length = region_height / 2 if block1["block_label"] in special_pre_cut_labels: length_condition = True else: length_condition = block_length > required_length # Condition 2: Centered check (must be within ±20 in both horizontal and vertical directions) block_x_center = (x1 + x2) / 2 block_y_center = (y1 + y2) / 2 tolerance_len = block_length // 5 if block1["block_label"] in special_pre_cut_labels: tolerance_len = block_length // 10 if is_horizontal_1: is_centered = abs(block_x_center - region_x_center) <= tolerance_len else: is_centered = abs(block_y_center - region_y_center) <= tolerance_len # Condition 3: Check for surrounding text has_left_text = False has_right_text = False has_above_text = False has_below_text = False for block2 in blocks: if block2["block_label"] != "text": continue bbox2 = block2["block_bbox"] x1_2, y1_2, x2_2, y2_2 = bbox2 if is_horizontal_1: if x2_2 <= x1 and not (y2_2 <= y1 or y1_2 >= y2): has_left_text = True if x1_2 >= x2 and not (y2_2 <= y1 or y1_2 >= y2): has_right_text = True else: if y2_2 <= y1 and not (x2_2 <= x1 or x1_2 >= x2): has_above_text = True if y1_2 >= y2 and not (x2_2 <= x1 or x1_2 >= x2): has_below_text = True if (is_horizontal_1 and has_left_text and has_right_text) or ( not is_horizontal_1 and has_above_text and has_below_text ): break no_text_on_sides = ( not (has_left_text or has_right_text) if is_horizontal_1 else not (has_above_text or has_below_text) ) # Add coordinates if all conditions are met if is_centered and length_condition and no_text_on_sides: if is_horizontal_1: pre_cuts.setdefault("y", []).append(y1) else: pre_cuts.setdefault("x", []).append(x1) for j, block2 in enumerate(blocks): if i == j: continue bbox2 = block2["block_bbox"] x1_prime, y1_prime, x2_prime, y2_prime = bbox2 is_horizontal_2 = _get_bbox_direction(bbox2) match_block_iou = _get_projection_iou( bbox2, bbox1, is_horizontal_1, ) def distance_(is_horizontal, is_left_up): if is_horizontal: if is_left_up: return (y1 - y2_prime + 2) // 5 + x1_prime / 5000 else: return (y1_prime - y2 + 2) // 5 + x1_prime / 5000 else: if is_left_up: return (x1 - x2_prime + 2) // 5 + y1_prime / 5000 else: return (x1_prime - x2 + 2) // 5 + y1_prime / 5000 block_iou_threshold = 0.1 if block1["block_label"] in sub_title_labels: block_iou_threshold = 0.5 if is_horizontal_1: if match_block_iou >= block_iou_threshold: left_up_distance = distance_(True, True) right_down_distance = distance_(True, False) if ( y2_prime <= y1 and left_up_distance <= left_up_title_text_distance ): left_up_title_text_distance = left_up_distance left_up_title_text_index = j left_up_title_text_direction = is_horizontal_2 elif ( y1_prime > y2 and right_down_distance < right_down_title_text_distance ): right_down_title_text_distance = right_down_distance right_down_title_text_index = j right_down_title_text_direction = is_horizontal_2 else: if match_block_iou >= block_iou_threshold: left_up_distance = distance_(False, True) right_down_distance = distance_(False, False) if ( x2_prime <= x1 and left_up_distance <= left_up_title_text_distance ): left_up_title_text_distance = left_up_distance left_up_title_text_index = j left_up_title_text_direction = is_horizontal_2 elif ( x1_prime > x2 and right_down_distance < right_down_title_text_distance ): right_down_title_text_distance = right_down_distance right_down_title_text_index = j right_down_title_text_direction = is_horizontal_2 height = bbox1[3] - bbox1[1] width = bbox1[2] - bbox1[0] title_text_weight = [0.8, 0.8] title_text, sub_title, vision_footnote = [], [], [] def get_sub_category_( title_text_direction, title_text_index, label, is_left_up=True, ): direction_ = [1, 3] if is_left_up else [2, 4] if ( title_text_direction == is_horizontal_1 and title_text_index != -1 and (label == "text" or label == "paragraph_title") ): bbox2 = blocks[title_text_index]["block_bbox"] if is_horizontal_1: height1 = bbox2[3] - bbox2[1] width1 = bbox2[2] - bbox2[0] if label == "text": if ( _nearest_edge_distance(bbox1, bbox2)[0] <= 15 and block1["block_label"] in vision_labels and width1 < width and height1 < 0.5 * height ): blocks[title_text_index]["sub_label"] = "vision_footnote" vision_footnote.append(bbox2) elif ( height1 < height * title_text_weight[0] and (width1 < width or width1 > 1.5 * width) and block1["block_label"] in title_labels ): blocks[title_text_index]["sub_label"] = "title_text" title_text.append((direction_[0], bbox2)) elif ( label == "paragraph_title" and block1["block_label"] in sub_title_labels ): sub_title.append(bbox2) else: height1 = bbox2[3] - bbox2[1] width1 = bbox2[2] - bbox2[0] if label == "text": if ( _nearest_edge_distance(bbox1, bbox2)[0] <= 15 and block1["block_label"] in vision_labels and height1 < height and width1 < 0.5 * width ): blocks[title_text_index]["sub_label"] = "vision_footnote" vision_footnote.append(bbox2) elif ( width1 < width * title_text_weight[1] and block1["block_label"] in title_labels ): blocks[title_text_index]["sub_label"] = "title_text" title_text.append((direction_[1], bbox2)) elif ( label == "paragraph_title" and block1["block_label"] in sub_title_labels ): sub_title.append(bbox2) if ( is_horizontal_1 and abs(left_up_title_text_distance - right_down_title_text_distance) * 5 > height ) or ( not is_horizontal_1 and abs(left_up_title_text_distance - right_down_title_text_distance) * 5 > width ): if left_up_title_text_distance < right_down_title_text_distance: get_sub_category_( left_up_title_text_direction, left_up_title_text_index, blocks[left_up_title_text_index]["block_label"], True, ) else: get_sub_category_( right_down_title_text_direction, right_down_title_text_index, blocks[right_down_title_text_index]["block_label"], False, ) else: get_sub_category_( left_up_title_text_direction, left_up_title_text_index, blocks[left_up_title_text_index]["block_label"], True, ) get_sub_category_( right_down_title_text_direction, right_down_title_text_index, blocks[right_down_title_text_index]["block_label"], False, ) if block1["block_label"] in title_labels: if blocks[i].get("title_text") == []: blocks[i]["title_text"] = title_text if block1["block_label"] in sub_title_labels: if blocks[i].get("sub_title") == []: blocks[i]["sub_title"] = sub_title if block1["block_label"] in vision_labels: if blocks[i].get("vision_footnote") == []: blocks[i]["vision_footnote"] = vision_footnote return blocks, pre_cuts def get_layout_ordering( parsing_res_list: List[Dict[str, Any]], no_mask_labels: List[str] = [], ) -> None: """ Process layout parsing results to remove overlapping bounding boxes and assign an ordering index based on their positions. Modifies: The 'parsing_res_list' list by adding an 'index' to each block. Args: parsing_res_list (List[Dict[str, Any]]): List of block dictionaries with 'block_bbox' and 'block_label'. no_mask_labels (List[str]): Labels for which overlapping removal is not performed. """ title_text_labels = ["doc_title"] title_labels = ["doc_title", "paragraph_title"] vision_labels = ["image", "table", "seal", "chart", "figure"] vision_title_labels = ["table_title", "chart_title", "figure_title"] parsing_res_list, _ = _remove_overlap_blocks( parsing_res_list, threshold=0.5, smaller=True, ) parsing_res_list, pre_cuts = _get_sub_category(parsing_res_list, title_text_labels) parsing_res_by_pre_cuts_list = [] if len(pre_cuts) > 0: block_bboxes = [block["block_bbox"] for block in parsing_res_list] for axis, cuts in pre_cuts.items(): axis_index = 1 if axis == "y" else 0 max_val = max(bbox[axis_index + 2] for bbox in block_bboxes) intervals = [] prev = 0 for cut in sorted(cuts): intervals.append((prev, cut)) prev = cut intervals.append((prev, max_val)) for start, end in intervals: mask = [ (bbox[axis_index] >= start) and (bbox[axis_index] < end) for bbox in block_bboxes ] parsing_res_by_pre_cuts_list.append( [parsing_res_list[i] for i, m in enumerate(mask) if m] ) else: parsing_res_by_pre_cuts_list = [parsing_res_list] final_parsing_res_list = [] num_index = 0 num_sub_index = 0 for parsing_res_by_pre_cuts in parsing_res_by_pre_cuts_list: doc_flag = False median_width = _get_text_median_width(parsing_res_by_pre_cuts) parsing_res_by_pre_cuts, projection_direction = _get_layout_property( parsing_res_by_pre_cuts, median_width, no_mask_labels=no_mask_labels, threshold=0.3, ) # Convert bounding boxes to float and remove overlaps ( double_text_blocks, title_text_blocks, title_blocks, vision_blocks, vision_title_blocks, vision_footnote_blocks, other_blocks, ) = ([], [], [], [], [], [], []) drop_indexes = [] for index, block in enumerate(parsing_res_by_pre_cuts): label = block["sub_label"] block["block_bbox"] = list(map(int, block["block_bbox"])) if label == "doc_title": doc_flag = True if label in no_mask_labels: if block["layout"] == "double": double_text_blocks.append(block) drop_indexes.append(index) elif label == "title_text": title_text_blocks.append(block) drop_indexes.append(index) elif label == "vision_footnote": vision_footnote_blocks.append(block) drop_indexes.append(index) elif label in vision_title_labels: vision_title_blocks.append(block) drop_indexes.append(index) elif label in title_labels: title_blocks.append(block) drop_indexes.append(index) elif label in vision_labels: vision_blocks.append(block) drop_indexes.append(index) else: other_blocks.append(block) drop_indexes.append(index) for index in sorted(drop_indexes, reverse=True): del parsing_res_by_pre_cuts[index] if len(parsing_res_by_pre_cuts) > 0: # single text label if ( len(double_text_blocks) > len(parsing_res_by_pre_cuts) or projection_direction ): parsing_res_by_pre_cuts.extend(title_blocks + double_text_blocks) title_blocks = [] double_text_blocks = [] block_bboxes = [ block["block_bbox"] for block in parsing_res_by_pre_cuts ] block_bboxes.sort( key=lambda x: ( x[0] // max(20, median_width), x[1], ), ) block_bboxes = np.array(block_bboxes) sorted_indices = sort_by_xycut(block_bboxes, direction=1, min_gap=1) else: block_bboxes = [ block["block_bbox"] for block in parsing_res_by_pre_cuts ] block_bboxes.sort(key=lambda x: (x[0] // 20, x[1])) block_bboxes = np.array(block_bboxes) sorted_indices = sort_by_xycut(block_bboxes, direction=0, min_gap=20) sorted_boxes = block_bboxes[sorted_indices].tolist() for block in parsing_res_by_pre_cuts: block["index"] = num_index + sorted_boxes.index(block["block_bbox"]) + 1 block["sub_index"] = ( num_sub_index + sorted_boxes.index(block["block_bbox"]) + 1 ) def nearest_match_(input_blocks, distance_type="manhattan", is_add_index=True): for block in input_blocks: bbox = block["block_bbox"] min_distance = float("inf") min_distance_config = [ [float("inf"), float("inf")], float("inf"), float("inf"), ] # for double text nearest_gt_index = 0 for match_block in parsing_res_by_pre_cuts: match_bbox = match_block["block_bbox"] if distance_type == "nearest_iou_edge_distance": distance, min_distance_config = _nearest_iou_edge_distance( bbox, match_bbox, block["sub_label"], vision_labels=vision_labels, no_mask_labels=no_mask_labels, median_width=median_width, title_labels=title_labels, title_text=block["title_text"], sub_title=block["sub_title"], min_distance_config=min_distance_config, tolerance_len=10, ) elif distance_type == "title_text": if ( match_block["block_label"] in title_labels + ["abstract"] and match_block["title_text"] != [] ): iou_left_up = _calculate_overlap_area_div_minbox_area_ratio( bbox, match_block["title_text"][0][1], ) iou_right_down = ( _calculate_overlap_area_div_minbox_area_ratio( bbox, match_block["title_text"][-1][1], ) ) iou = 1 - max(iou_left_up, iou_right_down) distance = _manhattan_distance(bbox, match_bbox) * iou else: distance = float("inf") elif distance_type == "manhattan": distance = _manhattan_distance(bbox, match_bbox) elif distance_type == "vision_footnote": if ( match_block["block_label"] in vision_labels and match_block["vision_footnote"] != [] ): iou_left_up = _calculate_overlap_area_div_minbox_area_ratio( bbox, match_block["vision_footnote"][0], ) iou_right_down = ( _calculate_overlap_area_div_minbox_area_ratio( bbox, match_block["vision_footnote"][-1], ) ) iou = 1 - max(iou_left_up, iou_right_down) distance = _manhattan_distance(bbox, match_bbox) * iou else: distance = float("inf") elif distance_type == "vision_body": if ( match_block["block_label"] in vision_title_labels and block["vision_footnote"] != [] ): iou_left_up = _calculate_overlap_area_div_minbox_area_ratio( match_bbox, block["vision_footnote"][0], ) iou_right_down = ( _calculate_overlap_area_div_minbox_area_ratio( match_bbox, block["vision_footnote"][-1], ) ) iou = 1 - max(iou_left_up, iou_right_down) distance = _manhattan_distance(bbox, match_bbox) * iou else: distance = float("inf") else: raise NotImplementedError if distance < min_distance: min_distance = distance if is_add_index: nearest_gt_index = match_block.get("index", 999) else: nearest_gt_index = match_block.get("sub_index", 999) if is_add_index: block["index"] = nearest_gt_index else: block["sub_index"] = nearest_gt_index parsing_res_by_pre_cuts.append(block) # double text label double_text_blocks.sort( key=lambda x: ( x["block_bbox"][1] // 10, x["block_bbox"][0] // median_width, x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2, ), ) nearest_match_( double_text_blocks, distance_type="nearest_iou_edge_distance", ) parsing_res_by_pre_cuts.sort( key=lambda x: (x["index"], x["block_bbox"][1], x["block_bbox"][0]), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["index"] = num_index + idx + 1 block["sub_index"] = num_sub_index + idx + 1 # title label title_blocks.sort( key=lambda x: ( x["block_bbox"][1] // 10, x["block_bbox"][0] // median_width, x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2, ), ) nearest_match_(title_blocks, distance_type="nearest_iou_edge_distance") if doc_flag: text_sort_labels = ["doc_title"] text_label_priority = { label: priority for priority, label in enumerate(text_sort_labels) } doc_titles = [] for i, block in enumerate(parsing_res_by_pre_cuts): if block["block_label"] == "doc_title": doc_titles.append( (i, block["block_bbox"][1], block["block_bbox"][0]), ) doc_titles.sort(key=lambda x: (x[1], x[2])) first_doc_title_index = doc_titles[0][0] parsing_res_by_pre_cuts[first_doc_title_index]["index"] = 1 parsing_res_by_pre_cuts.sort( key=lambda x: ( x["index"], text_label_priority.get(x["block_label"], 9999), x["block_bbox"][1], x["block_bbox"][0], ), ) else: parsing_res_by_pre_cuts.sort( key=lambda x: ( x["index"], x["block_bbox"][1], x["block_bbox"][0], ), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["index"] = num_index + idx + 1 block["sub_index"] = num_sub_index + idx + 1 # title-text label nearest_match_(title_text_blocks, distance_type="title_text") def hor_tb_and_ver_lr(x): input_bbox = x["block_bbox"] is_horizontal = _get_bbox_direction(input_bbox) if is_horizontal: return input_bbox[1] else: return input_bbox[0] parsing_res_by_pre_cuts.sort( key=lambda x: (x["index"], hor_tb_and_ver_lr(x)), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["index"] = num_index + idx + 1 block["sub_index"] = num_sub_index + idx + 1 # image,figure,chart,seal label nearest_match_( vision_blocks, distance_type="nearest_iou_edge_distance", is_add_index=False, ) parsing_res_by_pre_cuts.sort( key=lambda x: ( x["sub_index"], x["block_bbox"][1], x["block_bbox"][0], ), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["sub_index"] = num_sub_index + idx + 1 # image,figure,chart,seal title label nearest_match_( vision_title_blocks, distance_type="nearest_iou_edge_distance", is_add_index=False, ) parsing_res_by_pre_cuts.sort( key=lambda x: ( x["sub_index"], x["block_bbox"][1], x["block_bbox"][0], ), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["sub_index"] = num_sub_index + idx + 1 # vision footnote label nearest_match_( vision_footnote_blocks, distance_type="vision_footnote", is_add_index=False, ) text_label_priority = {"vision_footnote": 9999} parsing_res_by_pre_cuts.sort( key=lambda x: ( x["sub_index"], text_label_priority.get(x["sub_label"], 0), x["block_bbox"][1], x["block_bbox"][0], ), ) for idx, block in enumerate(parsing_res_by_pre_cuts): block["sub_index"] = num_sub_index + idx + 1 # header、footnote、header_image... label nearest_match_(other_blocks, distance_type="manhattan", is_add_index=False) # add all parsing result final_parsing_res_list.extend(parsing_res_by_pre_cuts) # update num index num_sub_index += len(parsing_res_by_pre_cuts) for parsing_res in parsing_res_by_pre_cuts: if parsing_res.get("index"): num_index += 1 parsing_res_list = [ { "block_label": parsing_res["block_label"], "block_content": parsing_res["block_content"], "block_bbox": parsing_res["block_bbox"], "block_image": parsing_res.get("block_image", None), "seg_start_flag": parsing_res["seg_start_flag"], "seg_end_flag": parsing_res["seg_end_flag"], "sub_label": parsing_res["sub_label"], "sub_index": parsing_res["sub_index"], "index": parsing_res.get("index", None), } for parsing_res in final_parsing_res_list ] return parsing_res_list def _manhattan_distance( point1: Tuple[float, float], point2: Tuple[float, float], weight_x: float = 1.0, weight_y: float = 1.0, ) -> float: """ Calculate the weighted Manhattan distance between two points. Args: point1 (Tuple[float, float]): The first point as (x, y). point2 (Tuple[float, float]): The second point as (x, y). weight_x (float): The weight for the x-axis distance. Default is 1.0. weight_y (float): The weight for the y-axis distance. Default is 1.0. Returns: float: The weighted Manhattan distance between the two points. """ return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1]) def _calculate_horizontal_distance( input_bbox: List[int], match_bbox: List[int], height: int, disperse: int, title_text: List[Tuple[int, List[int]]], ) -> float: """ Calculate the horizontal distance between two bounding boxes, considering title text adjustments. Args: input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object. match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against. height (int): The height of the input bounding box used for normalization. disperse (int): The dispersion factor used to normalize the horizontal distance. title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates. Format: [(position_indicator, [x1, y1, x2, y2]), ...]. Returns: float: The calculated horizontal distance taking into account the title text adjustments. """ x1, y1, x2, y2 = input_bbox x1_prime, y1_prime, x2_prime, y2_prime = match_bbox # Determine vertical distance adjustment based on title text if y2 < y1_prime: if title_text and title_text[-1][0] == 2: y2 += title_text[-1][1][3] - title_text[-1][1][1] vertical_adjustment = (y1_prime - y2) * 0.5 else: if title_text and title_text[0][0] == 1: y1 -= title_text[0][1][3] - title_text[0][1][1] vertical_adjustment = y1 - y2_prime # Calculate horizontal distance with adjustments horizontal_distance = ( abs(x2_prime - x1) // disperse + vertical_adjustment // height + vertical_adjustment / 5000 ) return horizontal_distance def _calculate_vertical_distance( input_bbox: List[int], match_bbox: List[int], width: int, disperse: int, title_text: List[Tuple[int, List[int]]], ) -> float: """ Calculate the vertical distance between two bounding boxes, considering title text adjustments. Args: input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object. match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against. width (int): The width of the input bounding box used for normalization. disperse (int): The dispersion factor used to normalize the vertical distance. title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates. Format: [(position_indicator, [x1, y1, x2, y2]), ...]. Returns: float: The calculated vertical distance taking into account the title text adjustments. """ x1, y1, x2, y2 = input_bbox x1_prime, y1_prime, x2_prime, y2_prime = match_bbox # Determine horizontal distance adjustment based on title text if x1 > x2_prime: if title_text and title_text[0][0] == 3: x1 -= title_text[0][1][2] - title_text[0][1][0] horizontal_adjustment = (x1 - x2_prime) * 0.5 else: if title_text and title_text[-1][0] == 4: x2 += title_text[-1][1][2] - title_text[-1][1][0] horizontal_adjustment = x1_prime - x2 # Calculate vertical distance with adjustments vertical_distance = ( abs(y2_prime - y1) // disperse + horizontal_adjustment // width + horizontal_adjustment / 5000 ) return vertical_distance def _nearest_edge_distance( input_bbox: List[int], match_bbox: List[int], weight: List[float] = [1.0, 1.0, 1.0, 1.0], label: str = "text", no_mask_labels: List[str] = [], min_edge_distance_config: List[float] = [], tolerance_len: float = 10.0, ) -> Tuple[float, List[float]]: """ Calculate the nearest edge distance between two bounding boxes, considering directional weights. Args: input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object. match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against. weight (list, optional): Directional weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1]. label (str, optional): The label/type of the object in the bounding box (e.g., 'text'). Defaults to 'text'. no_mask_labels (list, optional): Labels for which no masking is applied when calculating edge distances. Defaults to an empty list. min_edge_distance_config (list, optional): Configuration for minimum edge distances [min_edge_distance_x, min_edge_distance_y]. Defaults to [float('inf'), float('inf')]. tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10. Returns: Tuple[float, List[float]]: A tuple containing: - The calculated minimum edge distance between the bounding boxes. - A list with the minimum edge distances in the x and y directions. """ match_bbox_iou = _calculate_overlap_area_div_minbox_area_ratio( input_bbox, match_bbox, ) if match_bbox_iou > 0 and label not in no_mask_labels: return 0, [0, 0] if not min_edge_distance_config: min_edge_distance_config = [float("inf"), float("inf")] min_edge_distance_x, min_edge_distance_y = min_edge_distance_config x1, y1, x2, y2 = input_bbox x1_prime, y1_prime, x2_prime, y2_prime = match_bbox direction_num = 0 distance_x = float("inf") distance_y = float("inf") distance = [float("inf")] * 4 # input_bbox is to the left of match_bbox if x2 < x1_prime: direction_num += 1 distance[0] = x1_prime - x2 if abs(distance[0] - min_edge_distance_x) <= tolerance_len: distance_x = min_edge_distance_x * weight[0] else: distance_x = distance[0] * weight[0] # input_bbox is to the right of match_bbox elif x1 > x2_prime: direction_num += 1 distance[1] = x1 - x2_prime if abs(distance[1] - min_edge_distance_x) <= tolerance_len: distance_x = min_edge_distance_x * weight[1] else: distance_x = distance[1] * weight[1] elif match_bbox_iou > 0: distance[0] = 0 distance_x = 0 # input_bbox is above match_bbox if y2 < y1_prime: direction_num += 1 distance[2] = y1_prime - y2 if abs(distance[2] - min_edge_distance_y) <= tolerance_len: distance_y = min_edge_distance_y * weight[2] else: distance_y = distance[2] * weight[2] if label in no_mask_labels: distance_y = max(0.1, distance_y) * 10 # for abstract # input_bbox is below match_bbox elif y1 > y2_prime: direction_num += 1 distance[3] = y1 - y2_prime if abs(distance[3] - min_edge_distance_y) <= tolerance_len: distance_y = min_edge_distance_y * weight[3] else: distance_y = distance[3] * weight[3] elif match_bbox_iou > 0: distance[2] = 0 distance_y = 0 if direction_num == 2: return (distance_x + distance_y), [ min(distance[0], distance[1]), min(distance[2], distance[3]), ] else: return min(distance_x, distance_y), [ min(distance[0], distance[1]), min(distance[2], distance[3]), ] def _get_weights(label, horizontal): """Define weights based on the label and orientation.""" if label == "doc_title": return ( [1, 0.1, 0.1, 1] if horizontal else [0.2, 0.1, 1, 1] ) # left-down , right-left elif label in [ "paragraph_title", "table_title", "abstract", "image", "seal", "chart", "figure", ]: return [1, 1, 0.1, 1] # down else: return [1, 1, 1, 0.1] # up def _nearest_iou_edge_distance( input_bbox: List[int], match_bbox: List[int], label: str, vision_labels: List[str], no_mask_labels: List[str], median_width: int = -1, title_labels: List[str] = [], title_text: List[Tuple[int, List[int]]] = [], sub_title: List[List[int]] = [], min_distance_config: List[float] = [], tolerance_len: float = 10.0, ) -> Tuple[float, List[float]]: """ Calculate the nearest IOU edge distance between two bounding boxes, considering label types, title adjustments, and minimum distance configurations. This function computes the edge distance between two bounding boxes while considering their overlap (IOU) and various adjustments based on label types, title text, and subtitle information. It also applies minimum distance configurations and tolerance adjustments. Args: input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object. match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against. label (str): The label/type of the object in the bounding box (e.g., 'image', 'text', etc.). vision_labels (List[str]): List of labels for vision-related objects (e.g., images, icons). no_mask_labels (List[str]): Labels for which no masking is applied when calculating edge distances. median_width (int, optional): The median width for title dispersion calculation. Defaults to -1. title_labels (List[str], optional): Labels that indicate the object is a title. Defaults to an empty list. title_text (List[Tuple[int, List[int]]], optional): Text content associated with title labels, in the format [(position_indicator, [x1, y1, x2, y2]), ...]. sub_title (List[List[int]], optional): List of subtitle bounding boxes to adjust the input_bbox. Defaults to an empty list. min_distance_config (List[float], optional): Configuration for minimum distances [min_edge_distance_config, up_edge_distances_config, total_distance]. tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10.0. Returns: Tuple[float, List[float]]: A tuple containing: - The calculated distance considering IOU and adjustments. - The updated minimum distance configuration. """ x1, y1, x2, y2 = input_bbox x1_prime, y1_prime, x2_prime, y2_prime = match_bbox min_edge_distance_config, up_edge_distances_config, total_distance = ( min_distance_config ) iou_distance = 0 if label in vision_labels: horizontal1 = horizontal2 = True else: horizontal1 = _get_bbox_direction(input_bbox) horizontal2 = _get_bbox_direction(match_bbox, 3) if ( horizontal1 != horizontal2 or _get_projection_iou(input_bbox, match_bbox, horizontal1) < 0.01 ): iou_distance = 1 if label == "doc_title": # Calculate distance for titles disperse = max(1, median_width) tolerance_len = max(tolerance_len, disperse) # Adjust input_bbox based on sub_title if sub_title: for sub in sub_title: x1_, y1_, x2_, y2_ = sub x1, y1, x2, y2 = ( min(x1, x1_), min(y1, y1_), min(x2, x2_), max(y2, y2_), ) input_bbox = [x1, y1, x2, y2] if title_text: for sub in title_text: x1_, y1_, x2_, y2_ = sub[1] if horizontal1: x1, y1, x2, y2 = ( min(x1, x1_), min(y1, y1_), min(x2, x2_), max(y2, y2_), ) else: x1, y1, x2, y2 = ( min(x1, x1_), min(y1, y1_), max(x2, x2_), min(y2, y2_), ) input_bbox = [x1, y1, x2, y2] # Calculate edge distance weight = _get_weights(label, horizontal1) if label == "abstract": tolerance_len *= 2 edge_distance, edge_distance_config = _nearest_edge_distance( input_bbox, match_bbox, weight, label=label, no_mask_labels=no_mask_labels, min_edge_distance_config=min_edge_distance_config, tolerance_len=tolerance_len, ) # Weights for combining distances iou_edge_weight = [10**8, 10**4, 1, 0.0001] # Calculate up and left edge distances up_edge_distance = y1_prime left_edge_distance = x1_prime if ( label in no_mask_labels or label in title_labels or label in vision_labels ) and y1 > y2_prime: up_edge_distance = -y2_prime left_edge_distance = -x2_prime min_up_edge_distance = up_edge_distances_config if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len: up_edge_distance = min_up_edge_distance # Calculate total distance distance = ( iou_distance * iou_edge_weight[0] + edge_distance * iou_edge_weight[1] + up_edge_distance * iou_edge_weight[2] + left_edge_distance * iou_edge_weight[3] ) # Update minimum distance configuration if a smaller distance is found if total_distance > distance: edge_distance_config = [ edge_distance_config[0], edge_distance_config[1], ] min_distance_config = [ edge_distance_config, up_edge_distance, distance, ] return distance, min_distance_config def get_show_color(label: str) -> Tuple: label_colors = { # Medium Blue (from 'titles_list') "paragraph_title": (102, 102, 255, 100), "doc_title": (255, 248, 220, 100), # Cornsilk # Light Yellow (from 'tables_caption_list') "table_title": (255, 255, 102, 100), # Sky Blue (from 'imgs_caption_list') "figure_title": (102, 178, 255, 100), "chart_title": (221, 160, 221, 100), # Plum "vision_footnote": (144, 238, 144, 100), # Light Green # Deep Purple (from 'texts_list') "text": (153, 0, 76, 100), # Bright Green (from 'interequations_list') "formula": (0, 255, 0, 100), "abstract": (255, 239, 213, 100), # Papaya Whip # Medium Green (from 'lists_list' and 'indexs_list') "content": (40, 169, 92, 100), # Neutral Gray (from 'dropped_bbox_list') "seal": (158, 158, 158, 100), # Olive Yellow (from 'tables_body_list') "table": (204, 204, 0, 100), # Bright Green (from 'imgs_body_list') "image": (153, 255, 51, 100), # Bright Green (from 'imgs_body_list') "figure": (153, 255, 51, 100), "chart": (216, 191, 216, 100), # Thistle # Pale Yellow-Green (from 'tables_footnote_list') "reference": (229, 255, 204, 100), "algorithm": (255, 250, 240, 100), # Floral White } default_color = (158, 158, 158, 100) return label_colors.get(label, default_color)