# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod from pathlib import Path from ..build_model import build_model from ....utils.device import get_device from ....utils.misc import AutoRegisterABCMetaClass from ....utils.config import AttrDict def build_trainer(config: AttrDict) -> "BaseTrainer": """build model trainer Args: config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file. Returns: BaseTrainer: the trainer, which is subclass of BaseTrainer. """ model_name = config.Global.model return BaseTrainer.get(model_name)(config) class BaseTrainer(ABC, metaclass=AutoRegisterABCMetaClass): """ Base Model Trainer """ __is_base = True def __init__(self, config: AttrDict): """Initialize the instance. Args: config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file. """ super().__init__() self.global_config = config.Global self.train_config = config.Train self.deamon = self.build_deamon(self.global_config) self.pdx_config, self.pdx_model = build_model(self.global_config.model) def __call__(self, *args, **kwargs): """execute model training """ os.makedirs(self.global_config.output, exist_ok=True) self.train(*args, **kwargs) self.deamon.stop() def dump_config(self, config_file_path: str=None): """dump the config Args: config_file_path (str, optional): the path to save dumped config. Defaults to None, means that save in `Global.output` as `config.yaml`. """ if config_file_path is None: config_file_path = os.path.join(self.global_config.output, "config.yaml") self.pdx_config.dump(config_file_path) def train(self): """firstly, update and dump train config, then train model """ self.update_config() self.dump_config() train_result = self.pdx_model.train(**self.get_train_kwargs()) assert train_result.returncode == 0, f"Encountered an unexpected error({train_result.returncode}) in \ training!" def get_device(self, using_device_number: int=None) -> str: """get device setting from config Args: using_device_number (int, optional): specify device number to use. Defaults to None, means that base on config setting. Returns: str: device setting, such as: `gpu:0,1`, `npu:0,1` `cpu`. """ return get_device( self.global_config.device, using_device_number=using_device_number) @abstractmethod def build_deamon(self): """build deamon thread for saving training outputs timely """ raise NotImplementedError @abstractmethod def update_config(self): """update training config """ raise NotImplementedError @abstractmethod def get_train_kwargs(self): """get key-value arguments of model training function """ raise NotImplementedError