# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from ....utils import logging from ...base import BasePredictor from ...base.predictor.transforms import image_common from . import transforms as T from .keys import DetKeys as K from .utils import InnerConfig from ..support_models import SUPPORT_MODELS class DetPredictor(BasePredictor): """ Detection Predictor """ support_models = SUPPORT_MODELS def load_other_src(self): """ load the inner config file """ infer_cfg_file_path = os.path.join(self.model_dir, 'inference.yml') if not os.path.exists(infer_cfg_file_path): raise FileNotFoundError( f"Cannot find config file: {infer_cfg_file_path}") return InnerConfig(infer_cfg_file_path) @classmethod def get_input_keys(cls): """ get input keys """ return [[K.IMAGE], [K.IMAGE_PATH]] @classmethod def get_output_keys(cls): """ get output keys """ return [K.BOXES] def _run(self, batch_input): """ run """ input_dict = {} input_dict["image"] = np.stack( [data[K.IMAGE] for data in batch_input], axis=0).astype( dtype=np.float32, copy=False) input_dict["scale_factor"] = np.stack( [data[K.SCALE_FACTOR][::-1] for data in batch_input], axis=0).astype( dtype=np.float32, copy=False) input_dict["im_shape"] = np.stack( [data[K.IMAGE_SHAPE][::-1] for data in batch_input], axis=0).astype( dtype=np.float32, copy=False) input_ = [input_dict[i] for i in self._predictor.get_input_names()] batch_np_boxes, batch_np_boxes_num = self._predictor.predict(input_) pred = batch_input box_idx_start = 0 for idx in range(len(batch_input)): np_boxes_num = batch_np_boxes_num[idx] box_idx_end = box_idx_start + np_boxes_num np_boxes = batch_np_boxes[box_idx_start:box_idx_end] box_idx_start = box_idx_end batch_input[idx][K.BOXES] = np_boxes return pred def _get_pre_transforms_for_data(self, data): """ get preprocess transforms """ if K.IMAGE not in data: if K.IMAGE_PATH not in data: raise KeyError( f"Key {repr(K.IMAGE_PATH)} is required, but not found.") logging.info( f"Transformation operators for data preprocessing will be inferred from config file." ) pre_transforms = self.other_src.pre_transforms pre_transforms.insert(0, image_common.ReadImage(format='RGB')) else: raise RuntimeError( f"`{self.__class__.__name__}` does not have default transformation operators to preprocess the input. " f"Please set `pre_transforms` when using the {repr(K.IMAGE)} key in input dict." ) pre_transforms.insert(0, T.LoadLabels(self.other_src.labels)) return pre_transforms def _get_post_transforms_for_data(self, data): """ get postprocess transforms """ if data.get('cli_flag', False): output_dir = data.get("output_dir", "./") return [T.SaveDetResults(output_dir), T.PrintResult()] return []