# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from random import shuffle from .....utils.file_interface import custom_open def split_dataset(dataset_root, train_rate, val_rate): """ 将图像数据集按照比例分成训练集、验证集和测试集,并生成对应的.txt文件。 Args: dataset_root (str): 数据集根目录路径。 train_rate (int): 训练集占总数据集的比例(%)。 val_rate (int): 验证集占总数据集的比例(%)。 Returns: str: 数据划分结果信息。 """ sum_rate = train_rate + val_rate if sum_rate != 100: return "训练集、验证集比例之和需要等于100,请修改后重试" tags = ["train", "val"] valid_path = False image_files = [] for tag in tags: split_image_list = os.path.abspath( os.path.join(dataset_root, f'{tag}.txt')) rename_image_list = os.path.abspath( os.path.join(dataset_root, f'{tag}.txt.bak')) if os.path.exists(split_image_list): with custom_open(split_image_list, 'r') as f: lines = f.readlines() image_files = image_files + lines valid_path = True if not os.path.exists(rename_image_list): os.rename(split_image_list, rename_image_list) if not valid_path: return f"数据集目录下保存待划分文件{tags[0]}.txt或{tags[1]}.txt不存在,请检查后重试" shuffle(image_files) start = 0 image_num = len(image_files) rate_list = [train_rate, val_rate] for i, tag in enumerate(tags): rate = rate_list[i] if rate == 0: continue if rate > 100 or rate < 0: return f"{tag} 数据集的比例应该在0~100之间." end = start + round(image_num * rate / 100) if sum(rate_list[i + 1:]) == 0: end = image_num txt_file = os.path.abspath(os.path.join(dataset_root, tag + '.txt')) with custom_open(txt_file, 'w') as f: m = 0 for id in range(start, end): m += 1 f.write(image_files[id]) start = end return dataset_root