# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import glob from pathlib import Path from ..base import BaseTrainer from ...utils.config import AttrDict from .model_list import MODELS class UadTrainer(BaseTrainer): """Uad Model Trainer""" entities = MODELS def update_config(self): """update training config""" self.pdx_config.update_dataset(self.global_config.dataset_dir, "SegDataset") if self.train_config.num_classes is not None: self.pdx_config.update_num_classes(self.train_config.num_classes) if ( self.train_config.pretrain_weight_path and self.train_config.pretrain_weight_path != "" ): self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path, is_backbone=True ) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} # XXX: os.environ.pop("FLAGS_npu_jit_compile", None) if self.train_config.batch_size is not None: train_args["batch_size"] = self.train_config.batch_size if self.train_config.learning_rate is not None: train_args["learning_rate"] = self.train_config.learning_rate if self.train_config.epochs_iters is not None: train_args["epochs_iters"] = self.train_config.epochs_iters if ( self.train_config.resume_path is not None and self.train_config.resume_path != "" ): train_args["resume_path"] = self.train_config.resume_path if self.global_config.output is not None: train_args["save_dir"] = self.global_config.output if self.train_config.log_interval: train_args["log_iters"] = self.train_config.log_interval if self.train_config.eval_interval: train_args["do_eval"] = True train_args["save_interval"] = self.train_config.eval_interval train_args["dy2st"] = self.train_config.get("dy2st", False) return train_args