# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod from pathlib import Path from .build_model import build_model from ...utils.device import ( update_device_num, set_env_for_device, check_supported_device, ) from ...utils.misc import AutoRegisterABCMetaClass from ...utils.config import AttrDict from ...utils.logging import info def build_trainer(config: AttrDict) -> "BaseTrainer": """build model trainer Args: config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file. Returns: BaseTrainer: the trainer, which is subclass of BaseTrainer. """ model_name = config.Global.model try: import feature_line_modules except ModuleNotFoundError: pass return BaseTrainer.get(model_name)(config) class BaseTrainer(ABC, metaclass=AutoRegisterABCMetaClass): """Base Model Trainer""" __is_base = True def __init__(self, config: AttrDict): """Initialize the instance. Args: config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file. """ super().__init__() self.config = config self.global_config = config.Global self.train_config = config.Train self.eval_config = config.Evaluate self.benchmark_config = config.get("Benchmark", None) config_path = self.train_config.get("basic_config_path", None) self.pdx_config, self.pdx_model = build_model( self.global_config.model, config_path=config_path ) def train(self, *args, **kwargs): """execute model training""" os.makedirs(self.global_config.output, exist_ok=True) self.update_config() self.dump_config() train_args = self.get_train_kwargs() if self.benchmark_config is not None: train_args.update({"benchmark": self.benchmark_config}) export_with_pir = self.global_config.get("export_with_pir", False) or os.getenv( "FLAGS_json_format_model" ) in ["1", "True"] train_args.update( { "uniform_output_enabled": self.train_config.get( "uniform_output_enabled", True ), "export_with_pir": export_with_pir, } ) train_result = self.pdx_model.train(**train_args) assert ( train_result.returncode == 0 ), f"Encountered an unexpected error({train_result.returncode}) in \ training!" def dump_config(self, config_file_path: str = None): """dump the config Args: config_file_path (str, optional): the path to save dumped config. Defaults to None, means that save in `Global.output` as `config.yaml`. """ if config_file_path is None: config_file_path = os.path.join(self.global_config.output, "config.yaml") self.pdx_config.dump(config_file_path) def get_device(self, using_device_number: int = None) -> str: """get device setting from config Args: using_device_number (int, optional): specify device number to use. Defaults to None, means that base on config setting. Returns: str: device setting, such as: `gpu:0,1`, `npu:0,1` `cpu`. """ check_supported_device(self.global_config.device, self.global_config.model) set_env_for_device(self.global_config.device) if using_device_number: return update_device_num(self.global_config.device, using_device_number) return self.global_config.device @abstractmethod def update_config(self): """update training config""" raise NotImplementedError @abstractmethod def get_train_kwargs(self): """get key-value arguments of model training function""" raise NotImplementedError