# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ...utils.misc import abspath from ..base import BaseEvaluator from .model_list import MODELS class FaceRecEvaluator(BaseEvaluator): """Face Recognition Model Evaluator""" entities = MODELS def update_config(self): """update evalution config""" if self.eval_config.log_interval: self.pdx_config.update_log_interval(self.eval_config.log_interval) self.update_dataset_cfg() self.pdx_config.update_pretrained_weights(self.eval_config.weight_path) def update_dataset_cfg(self): val_dataset_dir = abspath(os.path.join(self.global_config.dataset_dir, "val")) val_list_path = abspath(os.path.join(val_dataset_dir, "pair_label.txt")) ds_cfg = [ f"DataLoader.Eval.dataset.name=FaceEvalDataset", f"DataLoader.Eval.dataset.dataset_root={val_dataset_dir}", f"DataLoader.Eval.dataset.pair_label_path={val_list_path}", ] self.pdx_config.update(ds_cfg) def get_eval_kwargs(self) -> dict: """get key-value arguments of model evalution function Returns: dict: the arguments of evaluation function. """ return { "weight_path": self.eval_config.weight_path, "device": self.get_device(using_device_number=1), }