from paddlex import create_pipeline import time from pathlib import Path # input_path = "./sample_data/300674-母公司现金流量表-扫描.png" input_path = "/Users/zhch158/workspace/data/流水分析/对公_招商银行图/table_recognition_v2_Results/对公_招商银行图/对公_招商银行图_page_001.png" pipeline_path = "./my_config/table_recognition_v2.yaml" pipeline_name = Path(pipeline_path).stem output_path = Path(f"./sample_data/single_pipeline_output/{pipeline_name}/") pipeline = create_pipeline(pipeline=pipeline_path) # For Image output = pipeline.predict( input=input_path, device="gpu", # 或者 "gpu" 如果你有 GPU 支持 use_doc_orientation_classify=True, # 开启文档方向分类 use_doc_unwarping=False, # 开启文档去畸变 # use_e2e_wireless_table_rec_model=True, # 开启端到端无线表格识别 use_wireless_table_cells_trans_to_html=True, # 开启无线表格单元格转 HTML ) # 可视化结果并保存 json 结果 for res in output: res.print() # res.save_to_json(save_path="sample_data/output") # res.save_to_markdown(save_path="sample_data/output") output_path.mkdir(parents=True, exist_ok=True) res.save_all(save_path=output_path.as_posix()) # 保存所有结果到指定路径