# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..components import SortBoxes, CropByPolys from ..results import OCRResult from .base import BasePipeline from ...utils import logging class OCRPipeline(BasePipeline): """OCR Pipeline""" entities = "OCR" def __init__( self, text_det_model, text_rec_model, text_det_batch_size=1, text_rec_batch_size=1, device=None, predictor_kwargs=None, ): super().__init__(device, predictor_kwargs) self._build_predictor(text_det_model, text_rec_model) self.set_predictor( text_det_batch_size=text_det_batch_size, text_rec_batch_size=text_rec_batch_size, ) def _build_predictor(self, text_det_model, text_rec_model): self.text_det_model = self._create(model=text_det_model) self.text_rec_model = self._create(model=text_rec_model) self.is_curve = self.text_det_model.model_name in [ "PP-OCRv4_mobile_seal_det", "PP-OCRv4_server_seal_det", ] self._sort_boxes = SortBoxes() self._crop_by_polys = CropByPolys( det_box_type="poly" if self.is_curve else "quad" ) def set_predictor( self, text_det_batch_size=None, text_rec_batch_size=None, device=None ): if text_det_batch_size and text_det_batch_size > 1: logging.warning( f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! " ) if text_rec_batch_size: self.text_rec_model.set_predictor(batch_size=text_rec_batch_size) if device: self.text_rec_model.set_predictor(device=device) self.text_det_model.set_predictor(device=device) def predict(self, input, **kwargs): self.set_predictor(**kwargs) for det_res in self.text_det_model(input): single_img_res = ( det_res if self.is_curve else next(self._sort_boxes(det_res)) ) single_img_res["rec_text"] = [] single_img_res["rec_score"] = [] if len(single_img_res["dt_polys"]) > 0: all_subs_of_img = list(self._crop_by_polys(single_img_res)) for rec_res in self.text_rec_model(all_subs_of_img): single_img_res["rec_text"].append(rec_res["rec_text"]) single_img_res["rec_score"].append(rec_res["rec_score"]) yield OCRResult(single_img_res)