# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from .... import UltraInferModel, ModelFormat from .... import c_lib_wrap as C class PIPNet(UltraInferModel): def __init__( self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX, ): """Load a face alignment model exported by PIPNet. :param model_file: (str)Path of model file, e.g ./PIPNet.onnx :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model, default is ONNX """ super(PIPNet, self).__init__(runtime_option) assert ( model_format == ModelFormat.ONNX ), "PIPNet only support model format of ModelFormat.ONNX now." self._model = C.vision.facealign.PIPNet( model_file, params_file, self._runtime_option, model_format ) assert self.initialized, "PIPNet initialize failed." def predict(self, input_image): """Detect an input image landmarks :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: FaceAlignmentResult """ return self._model.predict(input_image) @property def size(self): """ Returns the preprocess image size, default (256, 256) """ return self._model.size @property def mean_vals(self): """ Returns the mean value of normalization, default mean_vals = [0.485f, 0.456f, 0.406f]; """ return self._model.mean_vals @property def std_vals(self): """ Returns the std value of normalization, default std_vals = [0.229f, 0.224f, 0.225f]; """ return self._model.std_vals @property def num_landmarks(self): """ Returns the number of landmarks """ return self._model.num_landmarks @size.setter def size(self, wh): """ Set the preprocess image size, default (256, 256) """ assert isinstance( wh, (list, tuple) ), "The value to set `size` must be type of tuple or list." assert ( len(wh) == 2 ), "The value to set `size` must contains 2 elements means [width, height], but now it contains {} elements.".format( len(wh) ) self._model.size = wh @mean_vals.setter def mean_vals(self, value): assert isinstance( value, list ), "The value to set `mean_vals` must be type of list." self._model.mean_vals = value @std_vals.setter def std_vals(self, value): assert isinstance( value, list ), "The value to set `std_vals` must be type of list." self._model.std_vals = value @num_landmarks.setter def num_landmarks(self, value): assert isinstance( value, int ), "The value to set `std_vals` must be type of int." self._model.num_landmarks = value