# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import paddle from pathlib import Path from ..base import BaseTrainer, BaseTrainDeamon from .trainer import ClsTrainer, ClsTrainDeamon from .model_list import ML_MODELS from ...utils.config import AttrDict class MLClsTrainer(ClsTrainer, BaseTrainer): """ Multi Label Image Classification Model Trainer """ entities = ML_MODELS def update_config(self): """update training config """ if self.train_config.log_interval: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.train_config.eval_interval: self.pdx_config.update_eval_interval( self.train_config.eval_interval) if self.train_config.save_interval: self.pdx_config.update_save_interval( self.train_config.save_interval) self.pdx_config.update_dataset(self.global_config.dataset_dir, "MLClsDataset") if self.train_config.num_classes is not None: self.pdx_config.update_num_classes(self.train_config.num_classes) if self.train_config.pretrain_weight_path and self.train_config.pretrain_weight_path != "": self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path) label_dict_path = Path(self.global_config.dataset_dir).joinpath( "label.txt") if label_dict_path.exists(): self.dump_label_dict(label_dict_path) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate( self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config._update_epochs(self.train_config.epochs_iters) if self.train_config.warmup_steps is not None: self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps) if self.global_config.output is not None: self.pdx_config._update_output_dir(self.global_config.output)