# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import numpy as np from ...common.reader import ReadImage from ...common.batch_sampler import ImageBatchSampler from ...utils.pp_option import PaddlePredictorOption from ..base import BasePipeline # [TODO] 待更新models_new到models from ...models_new.image_multilabel_classification.result import MLClassResult class ImageMultiLabelClassificationPipeline(BasePipeline): """Image Multi Label Classification Pipeline""" entities = "image_multilabel_classification" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_params: Optional[Dict[str, Any]] = None, ) -> None: """ Initializes the class with given configurations and options. Args: config (Dict): Configuration dictionary containing model and other parameters. device (str): The device to run the prediction on. Default is None. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params ) self.threshold = config["SubModules"]["ImageMultiLabelClassification"].get( "threshold", None ) image_multilabel_classification_model_config = config["SubModules"][ "ImageMultiLabelClassification" ] self.image_multilabel_classification_model = self.create_model( image_multilabel_classification_model_config ) batch_size = image_multilabel_classification_model_config["batch_size"] def predict( self, input: str | list[str] | np.ndarray | list[np.ndarray], threshold: float | dict | list | None = None, **kwargs ) -> MLClassResult: """Predicts image classification results for the given input. Args: input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images. **kwargs: Additional keyword arguments that can be passed to the function. Returns: TopkResult: The predicted top k results. """ yield from self.image_multilabel_classification_model( input=input, threshold=self.threshold if threshold is None else threshold, )