# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...base import BaseDatasetChecker from .dataset_src import check, split_dataset, deep_analyse, convert from ..model_list import MODELS class FormulaRecDatasetChecker(BaseDatasetChecker): """Dataset Checker for Text Recognition Model""" entities = MODELS sample_num = 10 def convert_dataset(self, src_dataset_dir: str) -> str: """convert the dataset from other type to specified type Args: src_dataset_dir (str): the root directory of dataset. Returns: str: the root directory of converted dataset. """ return convert( self.check_dataset_config.convert.src_dataset_type, src_dataset_dir ) def split_dataset(self, src_dataset_dir: str) -> str: """repartition the train and validation dataset Args: src_dataset_dir (str): the root directory of dataset. Returns: str: the root directory of splited dataset. """ return split_dataset( src_dataset_dir, self.check_dataset_config.split.train_percent, self.check_dataset_config.split.val_percent, ) def check_dataset(self, dataset_dir: str, sample_num: int = sample_num) -> dict: """check if the dataset meets the specifications and get dataset summary Args: dataset_dir (str): the root directory of dataset. sample_num (int): the number to be sampled. Returns: dict: dataset summary. """ return check( dataset_dir, self.global_config.output, sample_num=10, dataset_type=self.get_dataset_type(), ) def analyse(self, dataset_dir: str) -> dict: """deep analyse dataset Args: dataset_dir (str): the root directory of dataset. Returns: dict: the deep analysis results. """ datatype = "FormulaRecDataset" return deep_analyse(dataset_dir, self.output, datatype=datatype) def get_show_type(self) -> str: """get the show type of dataset Returns: str: show type """ return "image" def get_dataset_type(self) -> str: """return the dataset type Returns: str: dataset type """ return "FormulaRecDataset"