"""
表格识别个性化适配器 (v6 - 行内重叠合并修正版)
核心思想:
1. 废弃全局坐标聚类,改为按行分组和对齐,极大提升对倾斜、不规则表格的鲁棒性。
2. 结构生成与内容填充彻底分离:
- `build_robust_html_from_cells`: 仅根据单元格几何位置,生成带`data-bbox`的HTML骨架。
- `fill_html_with_ocr_by_bbox`: 根据`data-bbox`从全局OCR结果中查找文本并填充。
3. 通过适配器直接替换PaddleX Pipeline中的核心方法,实现无侵入式升级。
"""
import importlib
from typing import Any, Dict, List
import numpy as np
from paddlex.inference.pipelines.table_recognition.result import SingleTableRecognitionResult
from paddlex.inference.pipelines.table_recognition.pipeline_v2 import OCRResult
# --- 1. 核心算法:基于排序和行分组的HTML结构生成 ---
def filter_nested_boxes(boxes: List[list]) -> List[list]:
"""
移除被其他框完全包含的框。
boxes: List[[x1, y1, x2, y2]]
"""
if not boxes:
return []
filtered = []
# 按面积从大到小排序,优先保留大框
boxes.sort(key=lambda b: (b[2] - b[0]) * (b[3] - b[1]), reverse=True)
for i, box in enumerate(boxes):
is_nested = False
for j in range(i): # 只需和排在前面的(更大的)框比较
outer_box = boxes[j]
# 判断 box 是否被 outer_box 包含
if outer_box[0] <= box[0] and outer_box[1] <= box[1] and \
outer_box[2] >= box[2] and outer_box[3] >= box[3]:
is_nested = True
break
if not is_nested:
filtered.append(box)
return filtered
def merge_overlapping_cells_in_row(row_cells: List[list], iou_threshold: float = 0.5) -> List[list]:
"""
合并单行内水平方向上高度重叠的单元格。
"""
if not row_cells:
return []
# 按x坐标排序
cells = sorted(row_cells, key=lambda c: c[0])
merged_cells = []
i = 0
while i < len(cells):
current_cell = list(cells[i]) # 使用副本
j = i + 1
while j < len(cells):
next_cell = cells[j]
# 计算交集
inter_x1 = max(current_cell[0], next_cell[0])
inter_y1 = max(current_cell[1], next_cell[1])
inter_x2 = min(current_cell[2], next_cell[2])
inter_y2 = min(current_cell[3], next_cell[3])
inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)
# 如果交集面积大于其中一个框面积的阈值,则认为是重叠
current_area = (current_cell[2] - current_cell[0]) * (current_cell[3] - current_cell[1])
next_area = (next_cell[2] - next_cell[0]) * (next_cell[3] - next_cell[1])
if inter_area > min(current_area, next_area) * iou_threshold:
# 合并两个框,取外包围框
current_cell[0] = min(current_cell[0], next_cell[0])
current_cell[1] = min(current_cell[1], next_cell[1])
current_cell[2] = max(current_cell[2], next_cell[2])
current_cell[3] = max(current_cell[3], next_cell[3])
j += 1
else:
break # 不再与更远的单元格合并
merged_cells.append(current_cell)
i = j
return merged_cells
def build_robust_html_from_cells(cells_det_results: List[list]) -> str:
"""
通过按行排序、分组、合并和对齐,稳健地将单元格Bbox列表转换为带data-bbox的HTML结构。
"""
if not cells_det_results:
return "
"
cells = filter_nested_boxes(cells_det_results)
cells.sort(key=lambda c: (c[1], c[0]))
rows = []
if cells:
current_row = [cells[0]]
row_anchor_y = (cells[0][1] + cells[0][3]) / 2
row_anchor_height = cells[0][3] - cells[0][1]
for cell in cells[1:]:
cell_y_center = (cell[1] + cell[3]) / 2
if abs(cell_y_center - row_anchor_y) < row_anchor_height * 0.7:
current_row.append(cell)
else:
rows.append(current_row)
current_row = [cell]
row_anchor_y = (cell[1] + cell[3]) / 2
row_anchor_height = cell[3] - cell[1]
rows.append(current_row)
html = ""
for row_cells in rows:
# 🎯 核心修正:在生成HTML前,合并行内的重叠单元格
merged_row_cells = merge_overlapping_cells_in_row(row_cells)
html += ""
for cell in merged_row_cells:
bbox_str = f"[{','.join(map(str, map(int, cell)))}]"
html += f' | '
html += "
"
html += "
"
return html
# --- 2. 内容填充工具 ---
def fill_html_with_ocr_by_bbox(html_skeleton: str, ocr_dt_boxes: list, ocr_texts: list) -> str:
"""
根据带有 data-bbox 的 HTML 骨架和全局 OCR 结果填充表格内容。
"""
try:
from bs4 import BeautifulSoup
except ImportError:
print("⚠️ BeautifulSoup not installed. Cannot fill table content. Returning skeleton.")
return html_skeleton
soup = BeautifulSoup(html_skeleton, 'html.parser')
# # ocr_dt_boxes = cells_ocr_res.get("rec_boxes", [])
# ocr_texts = cells_ocr_res.get("rec_texts", [])
# 为快速查找,将OCR结果组织起来
ocr_items = []
for box, text in zip(ocr_dt_boxes, ocr_texts):
center_x = (box[0] + box[2]) / 2
center_y = (box[1] + box[3]) / 2
ocr_items.append({'box': box, 'text': text, 'center': (center_x, center_y)})
for td in soup.find_all('td'):
if not td.has_attr('data-bbox'):
continue
bbox_str = td['data-bbox'].strip('[]')
cell_box = list(map(float, bbox_str.split(',')))
cx1, cy1, cx2, cy2 = cell_box
cell_texts_with_pos = []
# 查找所有中心点在该单元格内的OCR文本
for item in ocr_items:
if cx1 <= item['center'][0] <= cx2 and cy1 <= item['center'][1] <= cy2:
# 记录文本和其y坐标,用于后续排序
cell_texts_with_pos.append((item['text'], item['box'][1]))
if cell_texts_with_pos:
# 按y坐标排序,确保多行文本的顺序正确
cell_texts_with_pos.sort(key=lambda x: x[1])
# 合并文本
td.string = " ".join([text for text, y in cell_texts_with_pos])
return str(soup)
# --- 3. 适配器主函数和应用逻辑 ---
# 保存原始方法的引用
_original_predict_single = None
def enhanced_predict_single_table_recognition_res(
# self, *args, **kwargs):
self,
image_array: np.ndarray,
overall_ocr_res: OCRResult,
table_box: list,
use_e2e_wired_table_rec_model: bool = False,
use_e2e_wireless_table_rec_model: bool = False,
use_wired_table_cells_trans_to_html: bool = False,
use_wireless_table_cells_trans_to_html: bool = False,
use_ocr_results_with_table_cells: bool = True,
flag_find_nei_text: bool = True,
) -> SingleTableRecognitionResult:
"""
这是将被注入到 _TableRecognitionPipelineV2 实例中的增强版方法。
它调用我们新的、解耦的结构生成和内容填充逻辑。
"""
print(">>> [Adapter] enhanced_predict_single_table_recognition_res called")
# 🎯 复用原始逻辑来获取 table_cells_result
table_cls_pred = list(self.table_cls_model(image_array))[0]
table_cls_result = self.extract_results(table_cls_pred, "cls")
if table_cls_result == "wired_table":
table_cells_pred = list(self.wired_table_cells_detection_model(image_array, threshold=0.3))[0]
else: # wireless_table
table_cells_pred = list(self.wireless_table_cells_detection_model(image_array, threshold=0.3))[0]
table_cells_result, table_cells_score = self.extract_results(table_cells_pred, "det")
table_cells_result, table_cells_score = self.cells_det_results_nms(table_cells_result, table_cells_score)
cells_texts_list = self.gen_ocr_with_table_cells(image_array, table_cells_result)
# 🎯 注入我们的核心逻辑
# 只有当 use_wired_table_cells_trans_to_html 为 True 时,才使用我们的新方法
# 这样可以保持与原始行为的兼容性,并提供一个开关
if use_wired_table_cells_trans_to_html:
print(">>> [Adapter] Using robust HTML generation from cells.")
# 步骤1: 使用我们鲁棒的算法生成HTML骨架
html_skeleton = build_robust_html_from_cells(table_cells_result)
# 步骤2: 使用全局OCR结果和Bbox来填充内容
pred_html = fill_html_with_ocr_by_bbox(html_skeleton, table_cells_result, cells_texts_list)
single_img_res = {
"cell_box_list": table_cells_result,
"table_ocr_pred": {}, # 内容已填充,无需单独的 table_ocr_pred
"pred_html": pred_html,
}
# 构造并返回结果
res = SingleTableRecognitionResult(single_img_res)
res["neighbor_texts"] = "" # 保持字段存在
return res
else:
# 🎯 如果开关关闭,则调用原始的、未被补丁的方法
print(">>> [Adapter] Falling back to original predict_single_table_recognition_res.")
return _original_predict_single(self, *args, **kwargs)
def apply_table_recognition_adapter():
"""
应用表格识别适配器。
我们直接替换 _TableRecognitionPipelineV2 类中的 `predict_single_table_recognition_res` 方法。
"""
global _original_predict_single
try:
# 导入目标类
from paddlex.inference.pipelines.table_recognition.pipeline_v2 import _TableRecognitionPipelineV2
# 保存原函数,防止重复应用补丁
if _original_predict_single is None:
_original_predict_single = _TableRecognitionPipelineV2.predict_single_table_recognition_res
# 替换为增强版
_TableRecognitionPipelineV2.predict_single_table_recognition_res = enhanced_predict_single_table_recognition_res
print("✅ Table recognition adapter applied successfully (v3 - corrected).")
return True
except Exception as e:
print(f"❌ Failed to apply table recognition adapter: {e}")
return False
def restore_original_function():
"""恢复原始函数"""
global _original_predict_single
try:
from paddlex.inference.pipelines.table_recognition.pipeline_v2 import _TableRecognitionPipelineV2
if _original_predict_single is not None:
_TableRecognitionPipelineV2.predict_single_table_recognition_res = _original_predict_single
_original_predict_single = None # 重置状态
print("✅ Original function restored.")
return True
return False
except Exception as e:
print(f"❌ Failed to restore original function: {e}")
return False