# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ...modules.ts_forecast.model_list import MODELS from ..components import * from ..results import TSFcResult from .base import BasicPredictor class TSFcPredictor(BasicPredictor): entities = MODELS def _build_components(self): if not self.config.get("info_params", None): raise Exception("info_params is not found in config file") self._add_component(ReadTS()) self._add_component(TSCutOff(self.config["size"])) if self.config.get("scale", None): scaler_file_path = os.path.join(self.model_dir, "scaler.pkl") if not os.path.exists(scaler_file_path): raise Exception(f"Cannot find scaler file: {scaler_file_path}") self._add_component( TSNormalize(scaler_file_path, self.config["info_params"]) ) self._add_component(BuildTSDataset(self.config["info_params"])) if self.config.get("time_feat", None): self._add_component( TimeFeature( self.config["info_params"], self.config["size"], self.config["holiday"], ) ) self._add_component(TStoArray(self.config["input_data"])) predictor = TSPPPredictor( model_dir=self.model_dir, model_prefix=self.MODEL_FILE_PREFIX, option=self.pp_option, ) self._add_component(predictor) self._add_component(ArraytoTS(self.config["info_params"])) if self.config.get("scale", None): scaler_file_path = os.path.join(self.model_dir, "scaler.pkl") if not os.path.exists(scaler_file_path): raise Exception(f"Cannot find scaler file: {scaler_file_path}") self._add_component( TSDeNormalize(scaler_file_path, self.config["info_params"]) ) def _pack_res(self, single): return TSFcResult( {"input_path": single["input_path"], "forecast": single["pred"]} )