# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json from tqdm import tqdm from pycocotools.coco import COCO from .....utils.errors import ConvertFailedError from .....utils.logging import info, warning def check_src_dataset(root_dir, dataset_type): """check src dataset format validity""" if dataset_type in ("COCO"): anno_suffix = ".json" else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。" ) err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。" for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]: src_anno_path = os.path.join(root_dir, anno) if not os.path.exists(src_anno_path): raise ConvertFailedError( message=f"{err_msg_prefix}保证{src_anno_path}文件存在。" ) return None def convert(dataset_type, input_dir): """convert dataset to multilabel format""" # check format validity check_src_dataset(input_dir, dataset_type) if dataset_type in ("COCO"): convert_coco_dataset(input_dir) else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。" ) def convert_coco_dataset(root_dir): for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]: src_img_dir = root_dir src_anno_path = os.path.join(root_dir, anno) coco2multilabels(src_img_dir, src_anno_path, root_dir) def coco2multilabels(src_img_dir, src_anno_path, root_dir): image_dir = os.path.join(root_dir, "images") label_type = os.path.basename(src_anno_path).replace("instance_","").replace(".json","") anno_save_path = os.path.join(root_dir, "{}.txt".format(label_type)) coco = COCO(src_anno_path) cat_id_map = { old_cat_id: new_cat_id for new_cat_id, old_cat_id in enumerate(coco.getCatIds()) } num_classes = len(list(cat_id_map.keys())) with open(anno_save_path, 'w') as fp: lines = [] for img_id in tqdm(sorted(coco.getImgIds())): img_info = coco.loadImgs([img_id])[0] img_filename = img_info['file_name'] img_w = img_info['width'] img_h = img_info['height'] img_filepath = os.path.join(image_dir, img_filename) if not os.path.exists(img_filepath): warning('Illegal image file: {}, ' 'and it will be ignored'.format(img_filepath)) continue if img_w < 0 or img_h < 0: warning(msg)( 'Illegal width: {} or height: {} in annotation, ' 'and im_id: {} will be ignored'.format(img_w, img_h, img_id)) continue ins_anno_ids = coco.getAnnIds(imgIds=[img_id]) instances = coco.loadAnns(ins_anno_ids) label = [0] * num_classes for instance in instances: label[cat_id_map[instance['category_id']]] = 1 img_filename = os.path.join("images", img_filename) fp.writelines("{}\t{}\n".format(img_filename, ','.join(map(str, label)))) fp.close() if label_type == "train": label_txt_save_path = os.path.join(root_dir, "label.txt") with open(label_txt_save_path, 'w') as fp: label_name_list = [] for cat in coco.cats.values(): id = cat["id"] name = cat["name"] fp.writelines("{} {}\n".format(id, name)) fp.close() info("Save label names to {}.".format(label_txt_save_path))