# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import numpy as np from ..utils.io import ImageReader from ..components import CropByBoxes from ..results import AttributeRecResult from .base import BasePipeline class AttributeRecPipeline(BasePipeline): """Attribute Rec Pipeline""" entities = ["pedestrian_attribute_recognition", "vehicle_attribute_recognition"] def __init__( self, det_model, cls_model, det_batch_size=1, cls_batch_size=1, device=None, predictor_kwargs=None, ): super().__init__(device, predictor_kwargs) self._build_predictor(det_model, cls_model) self.set_predictor(det_batch_size, cls_batch_size, device) def _build_predictor(self, det_model, cls_model): self.det_model = self._create(model=det_model) self.cls_model = self._create(model=cls_model) self._crop_by_boxes = CropByBoxes() self._img_reader = ImageReader(backend="opencv") def set_predictor(self, det_batch_size=None, cls_batch_size=None, device=None): if det_batch_size: self.det_model.set_predictor(batch_size=det_batch_size) if cls_batch_size: self.cls_model.set_predictor(batch_size=cls_batch_size) if device: self.det_model.set_predictor(device=device) self.cls_model.set_predictor(device=device) def predict(self, input, **kwargs): self.set_predictor(**kwargs) for det_res in self.det_model(input): cls_res = self.get_cls_result(det_res) yield self.get_final_result(det_res, cls_res) def get_cls_result(self, det_res): subs_of_img = list(self._crop_by_boxes(det_res)) img_list = [img["img"] for img in subs_of_img] all_cls_res = list(self.cls_model(img_list)) output = {"label": [], "score": []} for res in all_cls_res: output["label"].append(res["label_names"]) output["score"].append(res["scores"]) return output def get_final_result(self, det_res, cls_res): single_img_res = {"input_path": det_res["input_path"], "boxes": []} for i, obj in enumerate(det_res["boxes"]): cls_scores = cls_res["score"][i] labels = cls_res["label"][i] single_img_res["boxes"].append( { "labels": labels, "cls_scores": cls_scores, "det_score": obj["score"], "coordinate": obj["coordinate"], } ) return AttributeRecResult(single_img_res)