# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ....utils import logging from ....utils.deps import pipeline_requires_extra from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ...models.object_detection.result import DetResult from ...utils.benchmark import benchmark from ...utils.hpi import HPIConfig from ...utils.pp_option import PaddlePredictorOption from .._parallel import AutoParallelImageSimpleInferencePipeline from ..base import BasePipeline from ..components import CropByBoxes from ..doc_preprocessor.result import DocPreprocessorResult from ..ocr.result import OCRResult from .result import SingleTableRecognitionResult, TableRecognitionResult from .table_recognition_post_processing import get_table_recognition_res from .utils import get_neighbor_boxes_idx @benchmark.time_methods class _TableRecognitionPipeline(BasePipeline): """Table Recognition Pipeline""" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None, ) -> None: """Initializes the layout parsing pipeline. Args: config (Dict): Configuration dictionary containing various settings. device (str, optional): Device to run the predictions on. Defaults to None. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None. use_hpip (bool, optional): Whether to use the high-performance inference plugin (HPIP) by default. Defaults to False. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional): The default high-performance inference configuration dictionary. Defaults to None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config ) self.use_doc_preprocessor = config.get("use_doc_preprocessor", True) if self.use_doc_preprocessor: doc_preprocessor_config = config.get("SubPipelines", {}).get( "DocPreprocessor", { "pipeline_config_error": "config error for doc_preprocessor_pipeline!" }, ) self.doc_preprocessor_pipeline = self.create_pipeline( doc_preprocessor_config ) self.use_layout_detection = config.get("use_layout_detection", True) if self.use_layout_detection: layout_det_config = config.get("SubModules", {}).get( "LayoutDetection", {"model_config_error": "config error for layout_det_model!"}, ) self.layout_det_model = self.create_model(layout_det_config) table_structure_config = config.get("SubModules", {}).get( "TableStructureRecognition", {"model_config_error": "config error for table_structure_model!"}, ) self.table_structure_model = self.create_model(table_structure_config) self.use_ocr_model = config.get("use_ocr_model", True) if self.use_ocr_model: general_ocr_config = config.get("SubPipelines", {}).get( "GeneralOCR", {"pipeline_config_error": "config error for general_ocr_pipeline!"}, ) self.general_ocr_pipeline = self.create_pipeline(general_ocr_config) else: self.general_ocr_config_bak = config.get("SubPipelines", {}).get( "GeneralOCR", None ) self._crop_by_boxes = CropByBoxes() self.batch_sampler = ImageBatchSampler(batch_size=1) self.img_reader = ReadImage(format="BGR") def get_model_settings( self, use_doc_orientation_classify: Optional[bool], use_doc_unwarping: Optional[bool], use_layout_detection: Optional[bool], use_ocr_model: Optional[bool], ) -> dict: """ Get the model settings based on the provided parameters or default values. Args: use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification. use_doc_unwarping (Optional[bool]): Whether to use document unwarping. use_layout_detection (Optional[bool]): Whether to use layout detection. use_ocr_model (Optional[bool]): Whether to use OCR model. Returns: dict: A dictionary containing the model settings. """ if use_doc_orientation_classify is None and use_doc_unwarping is None: use_doc_preprocessor = self.use_doc_preprocessor else: if use_doc_orientation_classify is True or use_doc_unwarping is True: use_doc_preprocessor = True else: use_doc_preprocessor = False if use_layout_detection is None: use_layout_detection = self.use_layout_detection if use_ocr_model is None: use_ocr_model = self.use_ocr_model return dict( use_doc_preprocessor=use_doc_preprocessor, use_layout_detection=use_layout_detection, use_ocr_model=use_ocr_model, ) def check_model_settings_valid( self, model_settings: Dict, overall_ocr_res: OCRResult, layout_det_res: DetResult, ) -> bool: """ Check if the input parameters are valid based on the initialized models. Args: model_settings (Dict): A dictionary containing input parameters. overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline. The overall OCR result with convert_points_to_boxes information. layout_det_res (DetResult): The layout detection result. Returns: bool: True if all required models are initialized according to input parameters, False otherwise. """ if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor: logging.error( "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized." ) return False if model_settings["use_layout_detection"]: if layout_det_res is not None: logging.error( "The layout detection model has already been initialized, please set use_layout_detection=False" ) return False if not self.use_layout_detection: logging.error( "Set use_layout_detection, but the models for layout detection are not initialized." ) return False if model_settings["use_ocr_model"]: if overall_ocr_res is not None: logging.error( "The OCR models have already been initialized, please set use_ocr_model=False" ) return False if not self.use_ocr_model: logging.error( "Set use_ocr_model, but the models for OCR are not initialized." ) return False else: if overall_ocr_res is None: logging.error("Set use_ocr_model=False, but no OCR results were found.") return False return True def predict_doc_preprocessor_res( self, image_array: np.ndarray, input_params: dict ) -> Tuple[DocPreprocessorResult, np.ndarray]: """ Preprocess the document image based on input parameters. Args: image_array (np.ndarray): The input image array. input_params (dict): Dictionary containing preprocessing parameters. Returns: tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing result dictionary and the processed image array. """ if input_params["use_doc_preprocessor"]: use_doc_orientation_classify = input_params["use_doc_orientation_classify"] use_doc_unwarping = input_params["use_doc_unwarping"] doc_preprocessor_res = list( self.doc_preprocessor_pipeline( image_array, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, ) )[0] doc_preprocessor_image = doc_preprocessor_res["output_img"] else: doc_preprocessor_res = {} doc_preprocessor_image = image_array return doc_preprocessor_res, doc_preprocessor_image def split_ocr_bboxes_by_table_cells(self, ori_img, cells_bboxes): """ Splits OCR bounding boxes by table cells and retrieves text. Args: ori_img (ndarray): The original image from which text regions will be extracted. cells_bboxes (list or ndarray): Detected cell bounding boxes to extract text from. Returns: list: A list containing the recognized texts from each cell. """ # Check if cells_bboxes is a list and convert it if not. if not isinstance(cells_bboxes, list): cells_bboxes = cells_bboxes.tolist() texts_list = [] # Initialize a list to store the recognized texts. # Process each bounding box provided in cells_bboxes. for i in range(len(cells_bboxes)): # Extract and round up the coordinates of the bounding box. x1, y1, x2, y2 = [math.ceil(k) for k in cells_bboxes[i]] # Perform OCR on the defined region of the image and get the recognized text. rec_te = list(self.general_ocr_pipeline(ori_img[y1:y2, x1:x2, :]))[0] # Concatenate the texts and append them to the texts_list. texts_list.append("".join(rec_te["rec_texts"])) # Return the list of recognized texts from each cell. return texts_list def split_ocr_bboxes_by_table_cells(self, ori_img, cells_bboxes): """ Splits OCR bounding boxes by table cells and retrieves text. Args: ori_img (ndarray): The original image from which text regions will be extracted. cells_bboxes (list or ndarray): Detected cell bounding boxes to extract text from. Returns: list: A list containing the recognized texts from each cell. """ # Check if cells_bboxes is a list and convert it if not. if not isinstance(cells_bboxes, list): cells_bboxes = cells_bboxes.tolist() texts_list = [] # Initialize a list to store the recognized texts. # Process each bounding box provided in cells_bboxes. for i in range(len(cells_bboxes)): # Extract and round up the coordinates of the bounding box. x1, y1, x2, y2 = [math.ceil(k) for k in cells_bboxes[i]] # Perform OCR on the defined region of the image and get the recognized text. rec_te = list(self.general_ocr_pipeline(ori_img[y1:y2, x1:x2, :]))[0] # Concatenate the texts and append them to the texts_list. texts_list.append("".join(rec_te["rec_texts"])) # Return the list of recognized texts from each cell. return texts_list def predict_single_table_recognition_res( self, image_array: np.ndarray, overall_ocr_res: OCRResult, table_box: list, use_ocr_results_with_table_cells: bool = False, flag_find_nei_text: bool = True, cell_sort_by_y_projection: bool = False, ) -> SingleTableRecognitionResult: """ Predict table recognition results from an image array, layout detection results, and OCR results. Args: image_array (np.ndarray): The input image represented as a numpy array. overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline. The overall OCR results containing text recognition information. table_box (list): The table box coordinates. use_ocr_results_with_table_cells (bool): whether to use OCR results with cells. flag_find_nei_text (bool): Whether to find neighboring text. cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection. Returns: SingleTableRecognitionResult: single table recognition result. """ table_structure_pred = list(self.table_structure_model(image_array))[0] if use_ocr_results_with_table_cells == True: table_cells_result = table_structure_pred["bbox"] table_cells_result = [ [rect[0], rect[1], rect[4], rect[5]] for rect in table_cells_result ] cells_texts_list = self.split_ocr_bboxes_by_table_cells( image_array, table_cells_result ) else: cells_texts_list = [] single_table_recognition_res = get_table_recognition_res( table_box, table_structure_pred, overall_ocr_res, cells_texts_list, use_ocr_results_with_table_cells, cell_sort_by_y_projection=cell_sort_by_y_projection, ) neighbor_text = "" if flag_find_nei_text: match_idx_list = get_neighbor_boxes_idx( overall_ocr_res["rec_boxes"], table_box ) if len(match_idx_list) > 0: for idx in match_idx_list: neighbor_text += overall_ocr_res["rec_texts"][idx] + "; " single_table_recognition_res["neighbor_texts"] = neighbor_text return single_table_recognition_res def predict( self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], use_doc_orientation_classify: Optional[bool] = None, use_doc_unwarping: Optional[bool] = None, use_layout_detection: Optional[bool] = None, use_ocr_model: Optional[bool] = None, overall_ocr_res: Optional[OCRResult] = None, layout_det_res: Optional[DetResult] = None, text_det_limit_side_len: Optional[int] = None, text_det_limit_type: Optional[str] = None, text_det_thresh: Optional[float] = None, text_det_box_thresh: Optional[float] = None, text_det_unclip_ratio: Optional[float] = None, text_rec_score_thresh: Optional[float] = None, use_ocr_results_with_table_cells: bool = False, cell_sort_by_y_projection: Optional[bool] = None, **kwargs, ) -> TableRecognitionResult: """ This function predicts the layout parsing result for the given input. Args: input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) of pdf(s) to be processed. use_layout_detection (bool): Whether to use layout detection. use_doc_orientation_classify (bool): Whether to use document orientation classification. use_doc_unwarping (bool): Whether to use document unwarping. overall_ocr_res (OCRResult): The overall OCR result with convert_points_to_boxes information. It will be used if it is not None and use_ocr_model is False. layout_det_res (DetResult): The layout detection result. It will be used if it is not None and use_layout_detection is False. use_ocr_results_with_table_cells (bool): whether to use OCR results with cells. cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection. **kwargs: Additional keyword arguments. Returns: TableRecognitionResult: The predicted table recognition result. """ model_settings = self.get_model_settings( use_doc_orientation_classify, use_doc_unwarping, use_layout_detection, use_ocr_model, ) if cell_sort_by_y_projection is None: cell_sort_by_y_projection = False if not self.check_model_settings_valid( model_settings, overall_ocr_res, layout_det_res ): yield {"error": "the input params for model settings are invalid!"} for img_id, batch_data in enumerate(self.batch_sampler(input)): image_array = self.img_reader(batch_data.instances)[0] if model_settings["use_doc_preprocessor"]: doc_preprocessor_res = list( self.doc_preprocessor_pipeline( image_array, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, ) )[0] else: doc_preprocessor_res = {"output_img": image_array} doc_preprocessor_image = doc_preprocessor_res["output_img"] if model_settings["use_ocr_model"]: overall_ocr_res = list( self.general_ocr_pipeline( doc_preprocessor_image, text_det_limit_side_len=text_det_limit_side_len, text_det_limit_type=text_det_limit_type, text_det_thresh=text_det_thresh, text_det_box_thresh=text_det_box_thresh, text_det_unclip_ratio=text_det_unclip_ratio, text_rec_score_thresh=text_rec_score_thresh, ) )[0] elif use_ocr_results_with_table_cells == True: assert self.general_ocr_config_bak != None self.general_ocr_pipeline = self.create_pipeline( self.general_ocr_config_bak ) table_res_list = [] table_region_id = 1 if not model_settings["use_layout_detection"] and layout_det_res is None: layout_det_res = {} img_height, img_width = doc_preprocessor_image.shape[:2] table_box = [0, 0, img_width - 1, img_height - 1] single_table_rec_res = self.predict_single_table_recognition_res( doc_preprocessor_image, overall_ocr_res, table_box, use_ocr_results_with_table_cells, flag_find_nei_text=False, cell_sort_by_y_projection=cell_sort_by_y_projection, ) single_table_rec_res["table_region_id"] = table_region_id table_res_list.append(single_table_rec_res) table_region_id += 1 else: if model_settings["use_layout_detection"]: layout_det_res = list( self.layout_det_model(doc_preprocessor_image) )[0] for box_info in layout_det_res["boxes"]: if box_info["label"].lower() in ["table"]: crop_img_info = self._crop_by_boxes(image_array, [box_info]) crop_img_info = crop_img_info[0] table_box = crop_img_info["box"] single_table_rec_res = ( self.predict_single_table_recognition_res( crop_img_info["img"], overall_ocr_res, table_box, use_ocr_results_with_table_cells, cell_sort_by_y_projection=cell_sort_by_y_projection, ) ) single_table_rec_res["table_region_id"] = table_region_id table_res_list.append(single_table_rec_res) table_region_id += 1 single_img_res = { "input_path": batch_data.input_paths[0], "page_index": batch_data.page_indexes[0], "doc_preprocessor_res": doc_preprocessor_res, "layout_det_res": layout_det_res, "overall_ocr_res": overall_ocr_res, "table_res_list": table_res_list, "model_settings": model_settings, } yield TableRecognitionResult(single_img_res) @pipeline_requires_extra("ocr") class TableRecognitionPipeline(AutoParallelImageSimpleInferencePipeline): entities = ["table_recognition"] @property def _pipeline_cls(self): return _TableRecognitionPipeline def _get_batch_size(self, config): return 1