# Runtime use_gpu: true use_xpu: false use_mlu: false use_npu: false log_iter: 20 save_dir: output snapshot_epoch: 1 print_flops: false print_params: false use_ema: true # Dataset metric: COCO num_classes: 80 TrainDataset: name: COCODataSet image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: dataset/coco data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: name: COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: dataset/coco allow_empty: true TestDataset: name: ImageFolder anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt) dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path' # Reader worker_num: 4 TrainReader: inputs_def: image_shape: [3, 512, 512] sample_transforms: - Decode: {} - FlipWarpAffine: {keep_res: False, input_h: 512, input_w: 512, use_random: True} - CenterRandColor: {} - Lighting: {eigval: [0.2141788, 0.01817699, 0.00341571], eigvec: [[-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938]]} - NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: False} - Permute: {} - Gt2CenterNetTarget: {down_ratio: 4, max_objs: 128} batch_size: 16 shuffle: True drop_last: True use_shared_memory: True EvalReader: sample_transforms: - Decode: {} - WarpAffine: {keep_res: True, input_h: 512, input_w: 512} - NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834]} - Permute: {} batch_size: 1 TestReader: inputs_def: image_shape: [3, 512, 512] sample_transforms: - Decode: {} - WarpAffine: {keep_res: True, input_h: 512, input_w: 512} - NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: True} - Permute: {} batch_size: 1 # Model architecture: CenterNet pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams norm_type: sync_bn use_ema: true ema_decay: 0.9998 CenterNet: backbone: ResNet neck: CenterNetDLAFPN head: CenterNetHead post_process: CenterNetPostProcess ResNet: depth: 50 variant: d return_idx: [0, 1, 2, 3] freeze_at: -1 norm_decay: 0. dcn_v2_stages: [3] CenterNetDLAFPN: first_level: 0 last_level: 4 down_ratio: 4 dcn_v2: False CenterNetHead: head_planes: 256 regress_ltrb: False CenterNetPostProcess: max_per_img: 100 regress_ltrb: False # Optimizer epoch: 140 LearningRate: base_lr: 0.0005 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [90, 120] use_warmup: False OptimizerBuilder: optimizer: type: Adam regularizer: NULL # Exporting the model export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. fuse_conv_bn: False