predictor.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from copy import deepcopy
  16. from abc import ABC, abstractmethod
  17. from .kernel_option import PaddleInferenceOption
  18. from .utils.paddle_inference_predictor import _PaddleInferencePredictor
  19. from .utils.mixin import FromDictMixin
  20. from .utils.batch import batchable_method, Batcher
  21. from .utils.node import Node
  22. from .utils.official_models import official_models
  23. from ....utils.device import get_device
  24. from ....utils import logging
  25. from ....utils.config import AttrDict
  26. class BasePredictor(ABC, FromDictMixin, Node):
  27. """ Base Predictor """
  28. __is_base = True
  29. MODEL_FILE_TAG = 'inference'
  30. def __init__(self,
  31. model_dir,
  32. kernel_option,
  33. output_dir,
  34. pre_transforms=None,
  35. post_transforms=None):
  36. super().__init__()
  37. self.model_dir = model_dir
  38. self.kernel_option = kernel_option
  39. self.output_dir = output_dir
  40. self.other_src = self.load_other_src()
  41. logging.debug(
  42. f"-------------------- {self.__class__.__name__} --------------------\n\
  43. Model: {self.model_dir}\n\
  44. Env: {self.kernel_option}")
  45. self.pre_tfs, self.post_tfs = self.build_transforms(pre_transforms,
  46. post_transforms)
  47. param_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdiparams")
  48. model_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdmodel")
  49. self._predictor = _PaddleInferencePredictor(
  50. param_path=param_path, model_path=model_path, option=kernel_option)
  51. def build_transforms(self, pre_transforms, post_transforms):
  52. """ build pre-transforms and post-transforms
  53. """
  54. pre_tfs = pre_transforms if pre_transforms is not None else self._get_pre_transforms_from_config(
  55. )
  56. logging.debug(f"Preprocess Ops: {self._format_transforms(pre_tfs)}")
  57. post_tfs = post_transforms if post_transforms is not None else self._get_post_transforms_from_config(
  58. )
  59. logging.debug(f"Postprocessing: {self._format_transforms(post_tfs)}")
  60. return pre_tfs, post_tfs
  61. def predict(self, input, batch_size=1):
  62. """ predict """
  63. if not isinstance(input, dict) and not (isinstance(input, list) and all(
  64. isinstance(ele, dict) for ele in input)):
  65. raise TypeError(f"`input` should be a dict or a list of dicts.")
  66. orig_input = input
  67. if isinstance(input, dict):
  68. input = [input]
  69. output = []
  70. for mini_batch in Batcher(input, batch_size=batch_size):
  71. mini_batch = self._preprocess(
  72. mini_batch, pre_transforms=self.pre_tfs)
  73. for data in mini_batch:
  74. self.check_input_keys(data)
  75. mini_batch = self._run(batch_input=mini_batch)
  76. for data in mini_batch:
  77. self.check_output_keys(data)
  78. mini_batch = self._postprocess(
  79. mini_batch, post_transforms=self.post_tfs)
  80. output.extend(mini_batch)
  81. if isinstance(orig_input, dict):
  82. return output[0]
  83. else:
  84. return output
  85. @abstractmethod
  86. def _run(self, batch_input):
  87. raise NotImplementedError
  88. @abstractmethod
  89. def _get_pre_transforms_from_config(self):
  90. """ get preprocess transforms """
  91. raise NotImplementedError
  92. @abstractmethod
  93. def _get_post_transforms_from_config(self):
  94. """ get postprocess transforms """
  95. raise NotImplementedError
  96. @batchable_method
  97. def _preprocess(self, data, pre_transforms):
  98. """ preprocess """
  99. for tf in pre_transforms:
  100. data = tf(data)
  101. return data
  102. @batchable_method
  103. def _postprocess(self, data, post_transforms):
  104. """ postprocess """
  105. for tf in post_transforms:
  106. data = tf(data)
  107. return data
  108. def _format_transforms(self, transforms):
  109. """ format transforms """
  110. ops_str = ", ".join([str(tf) for tf in transforms])
  111. return f"[{ops_str}]"
  112. def load_other_src(self):
  113. """ load other source
  114. """
  115. return None
  116. def get_input_keys(self):
  117. """get keys of input dict
  118. """
  119. return self.pre_tfs[0].get_input_keys()
  120. class PredictorBuilderByConfig(object):
  121. """build model predictor
  122. """
  123. def __init__(self, config):
  124. """
  125. Args:
  126. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  127. """
  128. model_name = config.Global.model
  129. device = config.Global.device
  130. predict_config = deepcopy(config.Predict)
  131. model_dir = predict_config.pop('model_dir')
  132. kernel_setting = predict_config.pop('kernel_option', {})
  133. kernel_setting.setdefault('device', device)
  134. kernel_option = PaddleInferenceOption(**kernel_setting)
  135. self.input_path = predict_config.pop('input_path')
  136. self.predictor = BasePredictor.get(model_name)(
  137. model_dir=model_dir,
  138. kernel_option=kernel_option,
  139. output_dir=config.Global.output_dir,
  140. **predict_config)
  141. def predict(self):
  142. """predict
  143. """
  144. self.predictor.predict({'input_path': self.input_path})
  145. def build_predictor(*args, **kwargs):
  146. """build predictor by config for dev
  147. """
  148. return PredictorBuilderByConfig(*args, **kwargs)
  149. def create_model(model_name,
  150. model_dir=None,
  151. kernel_option=None,
  152. output_dir=None,
  153. pre_transforms=None,
  154. post_transforms=None,
  155. *args,
  156. **kwargs):
  157. """create model for predicting using inference model
  158. """
  159. kernel_option = PaddleInferenceOption(
  160. ) if kernel_option is None else kernel_option
  161. if model_dir is None:
  162. if model_name in official_models:
  163. model_dir = official_models[model_name]
  164. else:
  165. # model name is invalid
  166. BasePredictor.get(model_name)
  167. return BasePredictor.get(model_name)(model_dir=model_dir,
  168. kernel_option=kernel_option,
  169. output_dir=output_dir,
  170. pre_transforms=pre_transforms,
  171. post_transforms=post_transforms,
  172. *args,
  173. **kwargs)