| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pathlib import Path
- from typing import Union
- from ...utils import logging
- from ..base.build_model import build_model
- from ..base.predictor import BasePredictor
- from ...utils.errors import raise_unsupported_api_error, raise_model_not_found_error
- from .support_models import SUPPORT_MODELS
- class TSFCPredictor(BasePredictor):
- """ TS Forecast Model Predictor """
- support_models = SUPPORT_MODELS
- def __init__(self, config):
- """Initialize the instance.
- Args:
- config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
- """
- self.global_config = config.Global
- self.predict_config = config.Predict
- config_path = self.get_config_path()
- self.pdx_config, self.pdx_model = build_model(
- self.global_config.model, config_path=config_path)
- def get_config_path(self) -> Union[str, None]:
- """
- get config path
- Returns:
- config_path (str): The path to the config
- """
- model_dir = self.predict_config.model_dir
- if Path(model_dir).exists():
- config_path = Path(model_dir).parent.parent / "config.yaml"
- if config_path.exists():
- return config_path
- else:
- logging.warning(
- f"The config file(`{config_path}`) related to model weight file(`{self.predict_config.model_dir}`) \
- is not exist, use default instead.")
- else:
- raise_model_not_found_error(model_dir)
- return None
- def predict(self, input=None, batch_size=1):
- """execute model predict
- Returns:
- dict: the prediction results
- """
- results = self.predict()
- def predict(self):
- """predict using specified model
- """
- # self.update_config()
- result = self.pdx_model.predict(**self.get_predict_kwargs())
- assert result.returncode == 0, f"Encountered an unexpected error({result.returncode}) in predicting!"
- def get_predict_kwargs(self) -> dict:
- """get key-value arguments of model predict function
- Returns:
- dict: the arguments of predict function.
- """
- return {
- "weight_path": self.predict_config.model_dir,
- "input_path": self.predict_config.input_path,
- "device": self.global_config.device,
- "save_dir": self.global_config.output
- }
- def _get_post_transforms_from_config(self):
- pass
- def _get_pre_transforms_from_config(self):
- pass
- def _run(self):
- pass
- def get_input_keys(self):
- """ get input keys """
- pass
- def get_output_keys(self):
- """ get output keys """
- pass
|