| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ..base import BasePipeline
- from ...modules import create_model, PaddleInferenceOption
- from ...modules.semantic_segmentation import transforms as T
- class SegPipeline(BasePipeline):
- """Seg Pipeline
- """
- support_models = "semantic_segmentation"
- def __init__(self,
- model_name=None,
- model_dir=None,
- output_dir="./output",
- kernel_option=None,
- device="gpu",
- **kwargs):
- self.model_name = model_name
- self.model_dir = model_dir
- self.output_dir = output_dir
- self.device = device
- self.kernel_option = self.get_kernel_option(
- ) if kernel_option is None else kernel_option
- if self.model_name is not None:
- self.load_model()
- def load_model(self):
- """load model predictor
- """
- assert self.model_name is not None
- self.model = create_model(
- model_name=self.model_name,
- model_dir=self.model_dir,
- output_dir=self.output_dir,
- kernel_option=self.kernel_option)
- def predict(self, input):
- """predict
- """
- return self.model.predict(input)
- def get_kernel_option(self):
- """get kernel option
- """
- kernel_option = PaddleInferenceOption()
- kernel_option.set_device(self.device)
- return kernel_option
- def update_model_name(self, model_name_list):
- """update model name and re
- Args:
- model_list (list): list of model name.
- """
- assert len(model_name_list) == 1
- self.model_name = model_name_list[0]
- def get_input_keys(self):
- """get dict keys of input argument input
- """
- return self.model.get_input_keys()
|